Recent Experimental Advances in Direct Dark Matter Searches

LHC is ready for the identification of Dark Matter...

... are Direct Search experiments ready?

J. Gascon UCB Lyon 1, CNRS/IN2P3/IPNL

ICHEP - Paris - July 2010

July 28th, 2010

Experimental Context

- CMSSM-motivated searches: recent leading results
 - XENON, CDMS, EDELWEISS

Other searches

• Low-mass and spin-dependent searches, directional detectors

An important piece of the puzzle

The pieces of the puzzle

Cosmology

- Need for non-baryonic WIMP dark matter in early universe (CMB, large-scale...) [WMAP, Planck, ...]
- Astrophysics
 - Gravitational probes at galactic/cluster sizes
 - WIMPs present in our Galaxy with density ~0.3 GeV/cm³
- Particle Physics
 - Thermal relics WIMPs appear as natural consequence of SuperSymmetry (and other theories like Kaluza-Klein, ...) [can be probed by Collider physics]
- Indirect Searches
 - Annihilation decay products: γ [HESS, FERMI...], v [IceCUBE, ANTARES], e⁺, pbar, dbar [ATIC, PAMELA, AMS, ...]...
- Direct Searches: galactic WIMP collision with an atom in lab
 - Is the halo of our Galaxy made of the same WIMPs that can be produced at colliders?

WIMP scattering rate

WIMP cross-sections in the CMSSM

- Most general SUSY not very predictive
- CMSSM (M_{GUT}~10¹⁶ GeV, "benchmark" for LHC): more predictive
- 10⁻⁸ pb "Focus point" ~"easy" reach for Direct Searches

- Focus search on this region, but keep eyes open for alternative models
- Complementarity: LHC probes M_{WIMP} , direct searches probe $\sigma_{WIMP-nucleon}$

- 10⁻⁸ pb ~ 1 evt/kg/year
 - Rate depends on *energy threshold* and *atomic mass*

Main challenge:

extreme suppression of background from natural radioactivity at low energy (ex.: people = 10¹⁰ decay/kg/year)

- Material selection
- Shielding (surround.+cosmics)
- Rejection
- Detailed understanding of background tails and detector imperfections.

Calculation based on Lewin & Smith convention [Astrop 6 (1996) 87]

- Directionality (correlation with v_{sun})
 - Challenge: ~20 nm recoil in solid, ~30 μ m in gas
 - Low-pressure TPC? -> Still on R&D
 - Small annual modulation of flux (~2%) requires large statistics + depends more on velocity distribution details.
- Nuclear (and not electron = dominant bkg) recoils
 - Particle identification
- A³ dependence of coherent scattering rate/kg
 - Motivates **diversity of target materials**
- Large scattering length
 - Self-shielding [Xenon, Argon] or
 segmentation+multiplicity [Ge, Scintillators]
- Control of systematics also favours target/expt. diversity

Competing technologies

- Trick: combine signals for ion/electron identification
- Heat (thermalized phonons): "true" calorimetric energy measurement
- Ionization, Scintillation: "Yield" or "Quenching" factor, low-energy calibration required
- Pulse shape discrimination: useful in some cases (Ne, Ar)
- Also: dE/dx in superheated medium: COUPP, PICASSO

Recent Searches Results since 2008

DAMA	April 08	Solid Scintillator – modulation only
ZEPLIN III	Dec 08	Double-phase noble gas
CDMS	March 08 / Dec 09	Cryogenic (Heat-ionization)
PICASSO	July 09	Metastable C_4F_{10} droplets (low-mass, spin dep.)
COUPP	Feb 08/ <mark>Feb 10</mark>	Metastable CF_3I bubble chamber (spin dep.)
CoGeNT	June 08/ <mark>Feb10</mark>	Ge 77K, low-mass WIMP
XENON100	March 10	Double-phase noble gas
EDELWEISS	Dec 09 / July10	Cryogenic (Heat-ionization)

M_{WIMP} > 40 GeV, Spin-independent

Achieved sensitivities in

CMSSM scan: Roszkowski, Ruiz de Autri and Trotta,

Noble liquid detectors

- Xe: large A; Ar: low cost
- High purification (recirculation)
 - ³⁹Ar (1Bq/kg): requires >10⁷ rejection for 10⁻⁸pb, or depleted Ar (DarkSide)
- 3 rejection techniques
 - Self-shielding in large volume [eg: K. Abe, XMASS, this conf.]
 - Ratio (prompt scintillation)/(ionization)
 - Scintillation pulse shape [eg: DEAP/CLEAN, M. Kos, this conf.]
 - Ar $\tau_{singulet}/\tau_{triplet} = 7ns/1.6\mu s$ (DEAP/CLEAN, WARP...)
 - Xe $\tau_{singulet}/\tau_{triplet} = 4ns/22ns$ (ZEPLIN-I -> poor discrim.)

XENON-100 at Gran Sasso

- Xenon 10 (2008) 22 kg LXe, 5 kg fiducial, 15 cm drift
- **Xenon 100** (2010) 170 kg LXe, 40 kg fiducial, 30 cm drift
- 98(top)+80(bottom) PM's -> (x,y) coordinates <3mm</p>
- ∆t (S2-S1): *z* coordinate

- Rejection tested with gamma/ neutron sources
- Wide γ distribution: keep lower
 50% of nuclear recoils
- ~10⁻² to 10⁻³ reduction of γ bkg in relevant range

XENON discrimination

XENON-100 data

250

XENON future

- XENON-100 to run until end 2010
 - goal 2x10⁻⁹pb
 - Improve purification
- XENON-1t (2014, Gran Sasso or LSM)
 - Goal: 3x10⁻¹¹ pb
 - Lower radioactivity PMT (QUPIDs) and cryostat, better purification scheme
- Many other Xenon/Argon programs in coming years: LUX, DEAP-CLEAN, WARP, ArDM, DarkSide
- Longer term: multi-ton expts (DARWIN, LZ)

Germanium heat+ionization

Germanium = very pure material

EDELWEISS ID

Nuclear recoils

150

⁶⁰Co

- Heat = true calorimetric measurement of recoil energy (independent of slowing-down process)
- Sub-keV resolution for ionization and heat signals is possible
- Ion. yield for nuclear recoils $\sim 1/3$ of e⁻ recoils
- Limitation: charge collection near surface => different rejection strategy for CDMS & EDELWEISS

1.5

1

0.5

0

0

50

200

50

100

Recoil Energy (keV)

1.5

0.5

0

0

Ionization/Recoil

Recoil Energy (keV)

CDMS ZIP detectors

- 250 g Ge or 100 g Si crystal @ 20 mK
- Phonon Sensors : Superconducting W thermometer
 - Photolithographic patterning
 - 4 quadrants, 37 cells per quadrant
 - 6x4 array of 250mm x 1mm W TES per cell
 - Each W sensor "fed" by 8 Al fins (quasiparticle collectors)
- Ionization Sensors: 2 electrodes + ground for rejection of evts in outer ring

CDMS-II @ SOUDAN mine

- 5 towers x 6 ZIPs
- 19 Ge x 250 g (4.4 kg)
- 2006-2008: >1200 kgd before cuts
- Last 612 kgd analysis released Dec. 2009

CDMS rejection

lear recoil

(252C)

- Athermal phonon => 4 quadrant signal give (x,y) coordinates (+energy correction)
- Rejection 2: Rise-time and time phonon and ionization signal

Selection tuned for <~1 evt bkg event</p>

CDMS-II final results

• OPEN the "box" (Nov. 2009) [Science 327 (2010) no 5973 p.1619; arXiv:0912.4025]

EDELWEISS-II ID detectors

- LSM in Frejus Tunnel (4 μ /day/m²)
- Goal: <10⁻⁸pb, with simple+reliable detectors with an alternative surface events rejection based on *charge signal*
- 2008-2009: 10x400 g new Ge fiducial mass) build, tested and operated in EDELWEISS-II low-bkg environment
 - 20cm lead + roman lead
 - 50cm polyethylene
 - muon veto

InterDigit detectors

- Concentric electrodes (simple field shape) + ultrasonic Au bonding
- Guard ring electrode on outer edge
- Operated at 20 mK

- Keep the EDW-I NTD thermal sensor (true ΔT measurement)
- •Modify the E-field near the surfaces with interleaved electrodes
- Use 'b' and 'd' signals as vetos against surface events
- Use |a-c| difference as another veto against surface events

ID401 to 405: Φ 70mm, H 20mm 410g

ID2 to ID5: Φ 70mm, H 20mm, 360g

ID detector surface rejection

²¹⁰Pb β rejection measured with 200g ID [Broniatowski, PLB 681 (2009) 305]

EDELWEISS-II: new updated results

- First results published after ~6 mo. [Armengaud et al, PLB 687 (2010) 294; arXiv:0912.0805]
- Update with additionnal ~8 months, same cuts as first 6 data set
- 3 evts near threshold + 1 at 175 keV (est. bkg: <1.6 evt at 90%CL)</p>
- Best limit: $\sigma_{SI(W-N)} = 5.0 \times 10^{-8}$ pb at M_W = 80 GeV (90%CL)
- High-stat γ calibrations: new backgrounds start to appear?

CDMS future

- Larger detectors (cost, bkg): 2.5 cm thickess, tests with φ = 10 cm and 15 cm (dislocation-free) => 5 kg units
- Super CDMS @ Soudan : 15 kg (2010-2012) runs with 600g i-ZIP
- Super CDMS @ SNOLAB : 100 kg (2012-2017)
- GeoDM @ DUSEL: 5 T (2017-...)

EDELWEISS future

... Omissions:

- Heat+Scintillation (CRESST CaWO₄ -> EURECA)
- Directional TPC detectors (DRIFT, Mimac, ...)
- Superheated droplets (PICASSO @ SNOLAB)
- CsI Pulse Shape discrimination (KIMS CsI)
- Modulation-only (LIBRA NaI)

...

Spin-dependent interactions

- Models where coherent A²
 enhancement is not present
 (pure axial interaction)
- Interactions on neutron: XENON best limit (^{129,131}Xe)
- Interactions on proton: COUPP best direct limit, but still far from MSSM, and not yet competitive with indirect Super-Kamiokande limit (v).

Low Mass WIMPs

- Observed excess at low energy, close to experimental thresholds, in DAMA/LIBRA (annual modulation in NaI) and CoGeNT (high-resolution Ge, ionization-only) [Aalseth et al, arXiv 1002.4703]
- Interpretation as M < 10 GeV WIMP? Inconsistent with XENON-100 [Aprile et al, subm. PRL, arXiv:1005.0380].
- Inconsistency avoided by questioning the precision of the calibration of the light yield for Xe recoils picture [Savage et al, arXiv 1006.0972, Cross Section [cm²] ₁₀₋₀₁ [cm²] Hooper et al, arXiv 1007.1005]
- Contradictory hints, require further investigations (& low thresholds)
- Emerging consensus: channeling of lattice ions no longer relevant [Bozorgnia et al, arXiv 1006.3110]

Inelastic Dark Matter

- Originaly Suggested to reconcile DAMA and CDMS
- Suppression of $\chi N \rightarrow \chi N$ relative to $\chi N \rightarrow \chi^* N$
- Suppression of low-E transfers and of σ on light nuclei
- Annual modulation can be >2% (solving DAMA S_0 problem)

New opportunities in Underground Labs

- Direct Dark Matter Searches: crucial experiments to attest the presence of WIMPs in our environment; strategic complementarity with LHC
- Apparently simple, but the required extreme low-backgrounds are challenging and they foster constant technological innovations.
- Need variety of targets (*Ar/Xe, Ge+scintillation in EURECA*)
- Intense world-wide competition of R&D efforts
- Leading technologies (for now):
 - cryogenic Ge (resolution & discrimination)
 - double-phase Xe (large mass, self-shielding & low thresholds)
- New opportunities with extension/build up of underground labs (DUSEL, LSM, JinPing, ...)