Measurement of the \(W \rightarrow \ell\nu \) and \(Z \rightarrow \ell\ell \)
production cross section in proton-proton collisions at \(\sqrt{s} = 7 \text{ TeV} \)
with the ATLAS detector

ATLAS-CONF-2010-051, ATLAS-CONF-2010-076

Jan Kretzschmar

University of Liverpool

On behalf of the ATLAS collaboration

ICHEP 2010 Paris, 23.7.2010
Inclusive production of W^\pm and Z bosons is a high cross section process, total σ known to $\sim 4\%$, dominated by PDF uncertainties

$$
\sigma_{W^+\rightarrow\ell^+\nu}^{NNLO} = 6.16 \text{ nb} \quad \sigma_{W^-\rightarrow\ell^-\bar{\nu}}^{NNLO} = 4.30 \text{ nb} \quad \sigma_{Z/\gamma^*\rightarrow\ell\ell}^{NNLO} = 0.96 \text{ nb}
$$

$\sqrt{s} = 7$ TeV, calculated with FEWZ using MSTW2008NNLO PDFs

Measurements in the electron and muon channels are important:

- Precise tests of QCD in unexplored regions of low parton momentum fraction at large scales; eventually constrain PDFs
- Detector commissioning and calibration especially using $Z/\gamma^*\rightarrow\ell\ell$ — Paving the road to precision measurements and new Physics!
Data and MC Samples

- W cross sections: $\mathcal{L} \approx 17 \text{ nb}^{-1}$ taken until June
- Z cross sections: $\mathcal{L} \approx 225 \text{ nb}^{-1}$
- Preview: $\mathcal{L} \approx 300 - 330 \text{ nb}^{-1}$
- Luminosity calibrated to 11% using van-der-Meer scans
- Recorded using single electron and muon hardware triggers with low thresholds

- MC signal and background with many 10^6 events per sample, fully simulated with GEANT4
- Pythia signal MC generated with MRST LO* PDFs, norm. to σ^{NNLO}
- Cross checks and acceptance calculations with latest MC@NLO version and CTEQ6.6 and HERAPDF1.0 PDFs
- QCD background is determined mostly directly from the data
Electron Reconstruction and Identification

Central $|\eta| < 2.47$: Calorimeter Cluster + Track

- **Loose Preselection**: Calorimeter 2nd sampling shapes and leakage
- **Medium** for $Z \rightarrow ee$: add Calorimeter 1st sampling shapes, Si tracker hits and impact parameter, track-cluster matching
- **Tight** for $W \rightarrow e\nu$: add b-layer hits and TRT high threshold hits, conversion rejection, E/p matching

Forward $2.5 < |\eta| < 4.9$: Only Calorimeter Cluster

- **forward Loose** Preselection
- **forward Tight** for $Z \rightarrow ee$ with one central + one forward electron
Muon Reconstruction

Combined muon $|\eta| < 2.4$:
- muon spectrometer (MS) + inner detector (ID) track
- Decays in flight, cosmics and other background reduced by p_T and spatial matching cuts between MS and ID
Towards \(W: \) Lepton Preselection

- Largely dominated by QCD background, \(W \) signal at large \(\mathbb{E}_T \)

Electron channel
- \(|\eta| < 1.37\) or \(|\eta| < 2.47\)
- \(E_T > 20 \text{ GeV} \)
- Loose identification
- QCD scaled \(\times 0.4 \)

Muon channel
- \(|\eta| < 2.4\)
- \(p_T > 15 \text{ GeV} \)
- QCD scaled \(\times 0.6 \)

\(\mathbb{E}_T \) calibrated for different EM/hadronic response
Towards W: Final Lepton Selection

W signal emerging clearly after further cuts to reduce fake leptons

Electron channel
- Using *tight* identification
- Calorimetric isolation in $\Delta R = 0.3$ cone used for QCD background estimation

Muon channel
- Cut on rel. Track isolation < 0.2 in $\Delta R = 0.4$ cone for lepton selection
Final W Signal and Background

- Requires $H_T > 25$ GeV and transverse mass
 \[m_T = \sqrt{2p_T^\ell p_T^\nu (1 - \cos(\phi^\ell - \phi^\nu))} > 40 \text{ GeV} \]
- Observe 46 e^\pm and 72 μ^\pm candidates
- Electroweak backgrounds (mainly $W \to \tau\nu$ in electron, $Z \to \mu\mu$ in muon channel) largest, taken from MC with $\lesssim 10\%$ syst. uncertainty
- QCD small, estimated with data driven techniques with $\approx 50\%$ syst. uncertainty

<table>
<thead>
<tr>
<th></th>
<th>Observed</th>
<th>EW Bkg.</th>
<th>QCD Bkg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>e^+</td>
<td>27</td>
<td>0.9</td>
<td>0.6</td>
</tr>
<tr>
<td>e^-</td>
<td>19</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>e^\pm</td>
<td>46</td>
<td>1.5</td>
<td>1.1</td>
</tr>
<tr>
<td>μ^+</td>
<td>47</td>
<td>2.4</td>
<td>0.7</td>
</tr>
<tr>
<td>μ^-</td>
<td>25</td>
<td>2.0</td>
<td>0.2</td>
</tr>
<tr>
<td>μ^\pm</td>
<td>72</td>
<td>4.4</td>
<td>0.9</td>
</tr>
</tbody>
</table>
Lepton Kinematics with Full W Selection

Good description of lepton kinematics, also separated by charges.
Measurement of the W Cross Sections

- Fiducial cross section inside the acceptance defined by geometrical and kinematic cuts

\[\sigma_{W}^{\text{fid}} \times \text{BR}(W \rightarrow \ell\nu) = \frac{N_{\text{obs}} - N_{\text{bkg}}}{C_{W}L_{\text{int}}} \]

- Correction for reconstruction, identification, trigger efficiencies and radiative effects performed with a single factor \(C_{W} \) taken from MC

- Total cross section is obtained using the geometrical acceptance \(A_{W} \)

\[\sigma_{W}^{\text{tot}} \times \text{BR}(W \rightarrow \ell\nu) = \frac{\sigma_{W}^{\text{fid}}}{A_{W}} \text{ where } A_{W} = \left(\frac{N_{\text{acc}}}{N_{\text{all}}} \right)_{\text{gen}} \]

<table>
<thead>
<tr>
<th>Generator</th>
<th>(A_{W}) (W^{+} \rightarrow e^{+}\nu)</th>
<th>(A_{W}) (W^{+} \rightarrow \mu^{+}\nu)</th>
<th>(A_{W}) (W^{-} \rightarrow e^{-}\bar{\nu})</th>
<th>(A_{W}) (W^{-} \rightarrow \mu^{-}\bar{\nu})</th>
</tr>
</thead>
<tbody>
<tr>
<td>PYTHIA MRSTLO*</td>
<td>0.466</td>
<td>0.484</td>
<td>0.457</td>
<td>0.475</td>
</tr>
<tr>
<td>MC@NLO HERAPDF1.0</td>
<td>0.475</td>
<td>0.494</td>
<td>0.454</td>
<td>0.472</td>
</tr>
<tr>
<td>MC@NLO CTEQ6.6</td>
<td>0.478</td>
<td>0.496</td>
<td>0.452</td>
<td>0.470</td>
</tr>
</tbody>
</table>

- Also \(W^{+} + W^{-} \) averaged; systematics from different generators \(\approx 3\% \)
Contributions and Uncertainties to C_W

- Much work has been invested to determine corrections and uncertainties to the MC derived C_W factors.
- Done using data as far as possible with current statistics, partially using other channels like $\pi^0 \rightarrow \gamma\gamma$, J/ψ or QCD dijets: e.g. trigger, μ reconstruction.
- Employ special MC samples with additional material or misalignments.
- $Z \rightarrow \ell\ell$ will soon become basis for systematic studies.

<table>
<thead>
<tr>
<th></th>
<th>$W \rightarrow e\nu$</th>
<th>$W \rightarrow \mu\nu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger</td>
<td>$99.9 \pm 0.1%$</td>
<td>$88% \pm 4%$</td>
</tr>
<tr>
<td>Lepton reconstruction</td>
<td>$78 \pm 6%$</td>
<td>$97% \pm 4%$</td>
</tr>
<tr>
<td>+ identification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material + dead regions</td>
<td>$\pm 4%$</td>
<td>—</td>
</tr>
<tr>
<td>Lepton scale & resolution</td>
<td>$\pm 3%$</td>
<td>$\pm 4%$</td>
</tr>
<tr>
<td>E_T scale & resolution</td>
<td></td>
<td>$\pm 2%$</td>
</tr>
<tr>
<td>charge averaged C_W</td>
<td>$66 \pm 8%$</td>
<td>$81 \pm 7%$</td>
</tr>
</tbody>
</table>

Jan Kretzschmar, 23.7.2010 – p.11
W Cross Section Results $\mathcal{L} = 17 \text{ nb}^{-1}$

<table>
<thead>
<tr>
<th></th>
<th>W^+</th>
<th>W^-</th>
<th>W^\pm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron channel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sigma_{\text{fid}} [\text{nb}]$</td>
<td>$2.3 \pm 0.5 \pm 0.2 \pm 0.3$</td>
<td>$1.6 \pm 0.4 \pm 0.1 \pm 0.2$</td>
<td>$3.9 \pm 0.6 \pm 0.3 \pm 0.4$</td>
</tr>
<tr>
<td>$\sigma_{\text{tot}} [\text{nb}]$</td>
<td>$5.0 \pm 1.0 \pm 0.4 \pm 0.5$</td>
<td>$3.5 \pm 0.9 \pm 0.3 \pm 0.4$</td>
<td>$8.5 \pm 1.3 \pm 0.7 \pm 0.9$</td>
</tr>
<tr>
<td>Muon channel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sigma_{\text{fid}} [\text{nb}]$</td>
<td>$3.2 \pm 0.5 \pm 0.2 \pm 0.4$</td>
<td>$1.7 \pm 0.4 \pm 0.1 \pm 0.2$</td>
<td>$4.9 \pm 0.6 \pm 0.4 \pm 0.5$</td>
</tr>
<tr>
<td>$\sigma_{\text{tot}} [\text{nb}]$</td>
<td>$6.6 \pm 1.0 \pm 0.5 \pm 0.7$</td>
<td>$3.6 \pm 0.8 \pm 0.3 \pm 0.4$</td>
<td>$10.3 \pm 1.3 \pm 0.8 \pm 1.1$</td>
</tr>
<tr>
<td>Theory Expectations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sigma_{\text{tot}} [\text{nb}]$</td>
<td>6.16 ± 0.25</td>
<td>4.30 ± 0.17</td>
<td>10.46 ± 0.42</td>
</tr>
</tbody>
</table>

- The limited data statistics is (still) dominating the result
- Good agreement with theory expectation within uncertainties so far
Inclusive $W \rightarrow \ell \nu$ at Hadron Colliders

\[\sigma_W \times \text{Br}(W \rightarrow \ell \nu) \text{[nb]} \]

ATLAS Preliminary

NNLO QCD (FEWZ)

ATLAS data 2010 ($\sqrt{s} = 7 \text{ TeV}$)

$\int L = 17 \text{ nb}^{-1}$

\[W \rightarrow (e/\mu)\nu \]
\[W^+ \rightarrow (e^+/\mu^+)\nu \]
\[W^- \rightarrow (e^-/\mu^-)\nu \]

CDF $W \rightarrow \ell \nu$

D0 $W \rightarrow (e/\mu)\nu$

UA1 $W \rightarrow \ell \nu$

UA2 $W \rightarrow e \nu$

Jan Kretzschmar, 23.7.2010 – p.13
Lepton Charge Asymmetry

- Difference of W^+ and W^- production can be measured via the lepton charge asymmetry
 \[A = \frac{\sigma^{l^+} - \sigma^{l^-}}{\sigma^{l^+} + \sigma^{l^-}} \]

- Constrains u/d quark ratio in proton, perform as function of η_l (correlated to parton momentum fraction x)

- Many uncertainties cancel fully (luminosity) or partially (lepton efficiencies)
Z → ℓℓ Selection

- Relaxed cuts compared to W analysis, but same preselection
- Measurement in invariant mass window $66 < m_{\ell\ell} < 116 \text{ GeV}$

Electron channel
- *Medium* cuts, opposite charge
- 46 candidates for background of 0.5 ± 0.1 events (dominated by QCD)

Muon channel
- Track isolation, opposite charge
- 79 candidates for background of 0.17 ± 0.02 events ($t\bar{t}$, $Z \rightarrow \tau\tau$, $b\bar{b}$)
Measurement of the Z/γ^* Cross Section

Same Procedure as for the W is used to determine σ_{fid} and σ_{tot}:

$$\sigma_{\text{fid}}^Z \times \text{BR} = \frac{N_{\text{obs}} - N_{\text{bkg}}}{C_Z \mathcal{L}_{\text{int}}}$$

$$\sigma_{\text{tot}}^Z \times \text{BR} = \frac{\sigma_{\text{fid}}^Z}{A_Z}$$

Uncertainties on C_Z correction factor

<table>
<thead>
<tr>
<th></th>
<th>$Z \rightarrow ee$</th>
<th>$Z \rightarrow \mu\mu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger</td>
<td>±0.2%</td>
<td>±2%</td>
</tr>
<tr>
<td>Effect of Lepton reconstruction + identification</td>
<td>±14%</td>
<td>±7%</td>
</tr>
<tr>
<td>Lepton scale & resolution</td>
<td>±2%</td>
<td>±1%</td>
</tr>
<tr>
<td>C_Z</td>
<td>65 ± 14%</td>
<td>80 ± 7%</td>
</tr>
</tbody>
</table>

Geometrical acceptance values A_Z known to at least $\approx 3\%$

<table>
<thead>
<tr>
<th></th>
<th>$Z \rightarrow e^+e^-$</th>
<th>$Z \rightarrow \mu^+\mu^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PYTHIA MRSTLO*</td>
<td>0.446</td>
<td>0.486</td>
</tr>
<tr>
<td>MC@NLO HERAPDF1.0</td>
<td>0.440</td>
<td>0.479</td>
</tr>
<tr>
<td>MC@NLO CTEQ6.6</td>
<td>0.445</td>
<td>0.485</td>
</tr>
</tbody>
</table>
Z/γ* Cross Section Results

<table>
<thead>
<tr>
<th></th>
<th>Electron channel</th>
<th>Muon channel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>σ ± stat ± sys ± lumi</td>
<td></td>
</tr>
<tr>
<td>σ_{fid} [nb]</td>
<td>0.32 ± 0.05 ± 0.05 ± 0.04</td>
<td>0.43 ± 0.05 ± 0.03 ± 0.05</td>
</tr>
<tr>
<td>σ_{tot} [nb]</td>
<td>0.72 ± 0.11 ± 0.10 ± 0.08</td>
<td>0.89 ± 0.10 ± 0.07 ± 0.10</td>
</tr>
</tbody>
</table>

- Agreement with theory expectation of $\sigma_{\text{tot}} = 0.96 \pm 0.04$ nb

![Graph showing the cross-section results](attachment:image.png)
Summary

A large rate of W and Z are expected to be recorded with the ATLAS in the electron and muon channels: important to calibrate the detector, precision tests of QCD and constraining PDFs.

Using the first 17 nb^{-1} of data
- $46 \ W \rightarrow e\nu$ candidates over 2.6 background events
 $\sigma_{\text{tot}} = 8.5 \pm 1.3(\text{stat}) \pm 0.7(\text{sys}) \pm 0.9(\text{lumi}) \text{ nb}$
- $72 \ W \rightarrow \mu\nu$ candidates over 5.3 background events
 $\sigma_{\text{tot}} = 10.3 \pm 1.3(\text{stat}) \pm 0.8(\text{sys}) \pm 1.1(\text{lumi}) \text{ nb}$
- Agrees with SM expectation $\sigma_{\text{tot}}^{NNLO} = 10.46 \pm 0.42 \text{ nb}$

Using the first 225 nb^{-1} of data
- $46 \ Z \rightarrow ee$ candidates over 0.5 background events
 $\sigma_{\text{tot}} = 0.72 \pm 0.11(\text{stat}) \pm 0.10(\text{sys}) \pm 0.08(\text{lumi}) \text{ nb}$
- $79 \ Z \rightarrow \mu\mu$ candidates over 0.2 background events
 $\sigma_{\text{tot}} = 0.89 \pm 0.10(\text{stat}) \pm 0.07(\text{sys}) \pm 0.10(\text{lumi}) \text{ nb}$
- Agrees with SM expectation $\sigma_{\text{tot}}^{NNLO} = 0.96 \pm 0.04 \text{ nb}$
An exciting start with much more to come...

815 $W \rightarrow e\nu$

56 $Z \rightarrow ee$

1111 $W \rightarrow \mu\nu$

106 $Z \rightarrow \mu\mu$

\[L = 296 \text{ nb}^{-1} \]

\[L = 297 \text{ nb}^{-1} \]

\[L = 291 \text{ nb}^{-1} \]

\[L = 331 \text{ nb}^{-1} \]