Spin, TMDs and DVCS at COMPASS

F. Kunne - CEA Saclay, France
on behalf of the COMPASS collaboration

- Longitudinal spin
 Gluon and quark helicity distributions
- Transverse spin &
 Transverse Momentum Dependent quark distributions
- Future measurements at COMPASS-II

ICHEP, International Conference High Energy Physics,
Paris, France, 2010, July 22-28
COMPASS

Fixed target experiment at the CERN SPS:
Use secondary muon or hadron beams. 220 physicists from 26 institutes

Nucleon spin structure

Polarized muon beam:
160 GeV μ^-, $P_B=80\%$

Polarized target:
6LiD $P_T=50\%$ 2002-2006
NH_3 $P_T=80\%$ 2007

Meson spectroscopy

Hadron beam:
190 GeV π/p LH$_2$ 2008-2009

Polarized muon beam:
160 GeV μ^-, $P_B=80\%$
Polarized target:
6LiD $P_T=50\%$ 2002-2006
NH_3 $P_T=80\%$ 2007

Dipole 1
Dipole 2
μ filter
RICH
ECal
HCal
MWPC
Straws
Micromegas
Drift chambers
SciFi
GEMs

DIS events
$0.003 < x < 0.5$
$10^{-3} < Q^2 < 10 (GeV/c)^2$

NIMA 577 (2007) 455
How is the nucleon spin distributed among its constituents?

Nucleon Spin \[\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_{q,g} \]

- Quark \(\Delta q = \vec{q} - \vec{q} \)
- Gluon \(\Delta G \)
- Orbital momentum \(L_{q,g} \)

Parton spin parallel or anti parallel to nucleon spin

Theory: QCD, Ellis-Jaffe sum rule assuming \(\Delta s = 0 \), \(\Delta \Sigma \approx 0.6 \)

Experiment: World data on polarized DIS \(g_1 + SU_f(3) \rightarrow a_0 \approx 0.3 \)

QCD (\(\overline{\text{MS}} \) scheme) \(a_0 = \Delta \Sigma \)

→ “Spin crisis” 1988, EMC measured \(a_0 = 0.12 \pm 0.17 \)

QCD (AB scheme) \(a_0 = \Delta \Sigma - n_f (\alpha_s/2\pi) \Delta G \)

- For \(a_0 \approx 0.3 \), need \(\Delta G \approx 2.5 \) to restore \(\Delta \Sigma \approx 0.6 \). (Then \(L_z \approx 2.3 \))
- \(\Delta G \) enters in the spin \(\frac{1}{2} \) sum rule

→ motivated direct measurements of gluon polarization \(\Delta G \)
ΔG/G Measurement- Photon Gluon fusion PGF

Need:
- a process sensitive to gluon distribution → Photon Gluon Fusion
- measure longitudinal spin asymmetry of cross sections → incident polarized lepton beam and polarized nucleon target.

At leading order

\[A_{||} = R_{PGF} \langle a_{LL} \rangle \langle \Delta G/G \rangle \]

Two signatures for PGF:

- \(q=c \) open charm \(c \rightarrow D^0 \rightarrow K \pi \)
 - Clean signature of PGF
 - pQCD scale \(\mu^2 = 4 (m_c^2 + p_T^2) \)
 - Combinatorial background & limited statistics → Difficult experiment

- \(q=u,d,s \) high \(p_T \) hadron pair \(q \bar{q} \rightarrow h \bar{h} \)
 - High statistics
 - pQCD scale \(Q^2 \) or \(\Sigma p_T^2 \)
 - Physical background, better described for high \(Q^2 \)
Results for $\Delta G/G$ direct measurements

All measurements compatible with 0 for $0.04 < x < 0.2$

Also in agreement with RHIC results on double spin asymmetry in polarized pp reactions, which probe same kinematical range

Direct measurements exclude values for the integral of ΔG as large as 1 or 2
Spin structure functions - world data

\[\sigma_{DIS}^{\text{inclusive}} \propto g_1(x) \propto \frac{1}{2} \sum q^2 (\Delta q(x) + \Delta \bar{q}(x)) \]

Polarized PDFs

Polarized DIS

From first moment of \(g_1 \), at \(Q^2 \to \infty \):

- \(\Delta \Sigma = 0.30 \pm 0.01 \) (stat.) \(\pm 0.02 \) (evol.) All data
- \(\Delta s + \Delta \bar{s} = -0.08 \pm 0.01 \pm 0.02 \) Compass data alone

Input to global QCD fits \(\Rightarrow \) Extract \(\Delta q_f(x) \) and \(\Delta G(x) \) through \(Q^2 \) evolution
$\Delta G(x)$ from global QCD analysis of polarized DIS data $g_1(x,Q^2)$

Use Q^2 evolution of spin dependent gluon and singlet quark distribution.

Lack of polarized data
Fits not so well constrained, however some results

COMPASS NLO fit of g_1 data:
2 solutions with $|\Delta G| = 0.2 - 0.3$

DSSV NLO fit of g_1 and $\vec{p}\vec{p}$ data
(different scale)

De Florian, Sassot, Stratmann, Vogelsang
Consequence for nucleon spin

\[\Delta G = \int \Delta g(x) dx \] not large, both from direct measurements (essentially PGF + RHIC) and \(g_1 \) QCD fit: \(|\Delta G| < 0.35 \)

\[\Delta \Sigma = a_0 + \left(\frac{3\alpha_s}{2\pi} \right) \Delta G \]
\[\text{within 0.06 for } \Delta G \text{ within } \pm 0.35 \text{ at } Q^2 = 3 \]

\[\rightarrow \Delta \Sigma \sim 0.30 \text{ small (≠ predictions)} \]

\[\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L \]

possible scenarios:

\[
\begin{align*}
\frac{1}{2} 0.3 + 0.35 + 0.0 \\
\frac{1}{2} 0.3 + 0.0 + 0.35 \\
\frac{1}{2} 0.3 - 0.35 + 0.7
\end{align*}
\]
Non Singlet structure function and Bjorken sum rule

Non-singlet combination: \(g_1^p(x) - g_1^n(x) \)

The first moment provides a test of the Bjorken sum rule, a fundamental result of QCD derived from current algebra.

\[
\int_0^1 g_1^{NS}(x) \, dx = \frac{1}{6} \left| \frac{g_A}{g_V} \right| C^{NS}
\]

Fit to COMPASS data: \(g_A/g_V = 1.28 \pm 0.07 \text{(stat)} \pm 0.10 \text{(syst)} \)

PDG value:
1.268 ± 0.003
LO Helicity quark distributions

- Full flavour decomposition down to $x \sim 0.004$
- Sea quark distributions \sim zero
- Good agreement with previous global fits to g_1 inclusive data, except for Δs.

However, for Δs:
- Large uncertainty on strange quark fragmentation functions.
- New global fits (DSSV) suggest negative contribution at lower x, in agreement with both inclusive result and semi inclusive data.
Transversity - Collins and Sivers asymmetries

• Transversely polarized target

• Measure simultaneously several azimuthal asymmetries of outgoing hadron in SIDIS $\mu p \rightarrow \mu p h$

\[
\begin{align*}
\text{Collins: } & \text{Outgoing hadron direction & quark transverse spin} \\
\text{Sivers: } & \text{nucleon spin & quark transverse momentum}
\end{align*}
\]

\[
A_{\text{Coll}} = \frac{\sum q e_q^2 \cdot \Delta T q \cdot \Delta D^h_q}{\sum q e_q^2 \cdot q \cdot D^h_q}
\]

Collins fragmentation function

\[
A_{\text{Siv}} = \frac{\sum q e_q^2 f_{1Tq} \cdot \perp D^h_q}{\sum q e_q^2 \cdot q \cdot D^h_q}
\]

note: $\Delta T q$ also measured using
- "Two hadron” fragm. fct.
- lambda Transverse. Polarization
Transversity: Collins Asymmetry on proton

COMPASS data compared to predictions from Anselmino et al., based on fit of HERMES-p and COMPASS-d data, and BELLE FF.

• Large signals in valence region as seen by HERMES, opposite for + and - hadrons
• Data support assumption of weak Q^2 dependence in this energy range

Several combined analyses of HERMES p and COMPASS d data:

• $\Delta_T^u > 0$ and $\Delta_T^d < 0$

• Do not saturate
 Soffer bound

• Smaller than helicity

Ex: M. Anselmino et al. arXiv:0812.4366
Transversity via “two hadron”

as an alternative for $\Delta_T u$ and $\Delta_T d$

- Confirms non zero effect at large x; larger than Collins asymmetry

- (Smaller) signal was also seen in HERMES in different phase space; difficult to describe both simultaneously A. Bacchetta et al., Mah et al.
Sivers Asymmetry - proton

Comparison with predictions from Anselmino et al., based on fit of Hermes-p and Compass-d data

Present data not in fit
- COMPASS signal < HERMES signal
- Possible W dependence

Comparison with calculations of Arnold et al., which are in agreement with Hermes-p data.
Example of one azimuthal asymmetry

Unpolarized target.

\[\cos(2\phi) \] modulation comparison with theory

V. Barone, A. Prokudin, B. Q. Ma

Sensitivity to Transverse Momentum Distributions
Future QCD studies at COMPASS II

COMPASS-II proposal submitted to CERN SPSC, June 2010

• **GPD (Generalized Parton Distributions)** \(\mu p \rightarrow \mu p \gamma \)
 by exclusive reactions **DVCS** (Deep Virtual ComptonScattering) and **DVMP** (Meson production),
 2 year 'beam charge and spin asymmetry' measurement

• **Polarized Drell-Yan** \(\pi p^\uparrow \rightarrow \mu^+ \mu^- X \)
 Sivers & Boer-Mulders
 Transverse Momentum Dependent distributions
 2 years transversely polarised proton target
 Test of factorization approach
Generalized Parton Distributions

- Unified description of form factors and parton distribution functions
- Transverse imaging = nucleon tomography and (in far future) sensitivity to the quark angular momentum

Kinematic domain: intermediate between HERA and JLab \(10^{-2} < x_B < 10^{-1}\)

Ex: Beam charge & spin asymmetry in DVCS process (interfering with BH):

First signal of DVCS&BH from 2009 short test run, compared to simulations
Measurement of unpolarized PDfs

- In parallel to the DVCS/DVMP program, get (for free) SIDIS data on LH$_2$ target

- Extract strange quark PDF $s(x)$ as well as quark fragmentation functions from kaon multiplicities

Short term goal: LO analysis from COMPASS data alone integrated over z

Longer term goal: provide p and K multiplicities as fct of x, z for global QCD analyses
Polarized Drell-Yan \(\pi^- p \uparrow \rightarrow \mu^+ \mu^- X \)
transversely polarised NH\(_3\) target

\(\sigma^{DY} \propto f_{u|\pi^-} \otimes f_{u|p} \)

→ Transverse Momentum Dependent (TMD) parton distribution functions

Sivers and Boer Mulders fct will be measured:
- in Drell-Yan process
- in \(\mu p \) SIDIS process

Expect opposite sign
→ Test of factorization approach

\(4 < M_{\mu^+\mu^-} < 9 \text{ GeV} \)

COMPASS DY beam test 2009

Ex: \(A_{UT} \) asymmetry in Drell-Yan process

Anselmino et al.

Bacchetta et al

COMPASS proj.
2 years
COMPASS (Spin) Summary

- **Gluon polarization**
 - High p_T: at LO, $\Delta G/G \sim 0$ at $x \sim 0.1$ two independent & precise results
 - Charm: at LO, $\Delta G/G = -0.08 \pm 0.21 \pm 0.11$

- **Quark helicity**: extraction at LO for all flavours
 $\Delta s \sim 0$ from SIDIS in measured region

- **Transversity:**
 - Collins and Sivers deuteron, compatible ~ 0
 - Collins proton: Signal in valence region, for pos. and neg. Hadrons
 Extract $\Delta_T u > 0$ and $\Delta_T d < 0$
 - Sivers proton: Signal for positive hadrons; possible W dependence

And exciting future program in preparation

2010 Precision measurement on Transverse Spin (Sivers)
2011 Longitudinal Spin
2012 & beyond: New proposal COMPASS II
Spares
Exclusive ρ^o - Transverse Target SSA

- Asymmetry on proton sensitive to GPD E, part of Ji sum rule on L_q
- Flip of nucleon helicity (and not of quark). Overall helicity not conserved
- Angular momentum conservation \rightarrow transfer of orbital angular momentum

Asymmetry compatible with 0

In agreement with Goloskokov & Kroll prediction
- For ρ^o, value of 0.02 in EPJC 59 (2009); hep-ph/08094126
- For ω, larger value expected: 0.10
- ρ^o: Asymmetry on deuteron measured to be 0 by COMPASS
\[
\int_{0.004}^{0.3} (\Delta \bar{u} - \Delta \bar{d}) dx = 0.052 \pm 0.035 \text{(stat.)} \pm 0.013 \text{(syst.)}
\]

Flavour asymmetry not as large as in unpolarized case:

\[
\int_{0}^{1} (\bar{u} - \bar{d}) dx = 0.118 \pm 0.012
\]