Fermion Mass Hierarchy and New Physics at the TeV Scale

S. Nandi
Oklahoma State University
and Oklahoma Center for High Energy Physics
(Talk at ICHEP, Paris, July 22-28, 2010)
Fermion mass hierarchy

Longstanding problem

- Charged fermion masses vary by 5 orders of magnitude
- Quark mixing angles vary by 2 orders of magnitude

Two main approaches

- Fermion mass hierarchy is caused from physics at high scale (GUT scale or Planck scale): Frogatt-Nielsen mechanism
- Caused by some new physics at the TeV scale
This Talk

: Our approach: New physics at the TeV scale

Based on the work by J.D. Lykken, Z. Murdock and S. Nandi,
(Phys Rev D, 2009)

And B. Grossmann, Z. Murdock and S. Nandi (to appear)
Outline

- Introduction
- Model and Formalism
- Phenomenological Implications
 - Constraints from existing Experiments
 - New Physics Signals for the LHC
- TeV Completion
- Conclusions
Introduction

- In the Standard Model: \(m_{q_i} = y_{q_i} v \)

\[L_Y = y_{d_i} \overline{q}_{iL} d_{iR} H + y_{u_i} \overline{q}_{iL} u_{iR} \tilde{H} + h.c. \]

- Top quark is directly connected to EW symmetry breaking sector
- Has dimension 4 Yukawa interaction

\(m_t \sim 172 \text{ GeV} \Rightarrow y_t \sim 1 \)

\(y_b, y_c, y_s, y_d, y_u, y_e, y_\mu, y_\tau \ll 1 \)

- Probably not directly connected to EW symmetry breaking sector
- They may be connected via some messenger fields
Model and Formalism

- Extend SM gauge symmetry by a $U(1)_S$ local symmetry and $U(1)_F$ global flavor symmetry
 - All SM fermions are neutral with respect to $U(1)_S$
 - All SM fermions, except q_{3L} and u_{3R}, are charged with respect to $U(1)_F$

- Introduce a complex scalar field S
 - S has charge +1 under $U(1)_S$, and neutral under $U(1)_F$

- Introduce a complex flavon field, F
 - F is charged under $U(1)_F$, neutral under $U(1)_S$, and SM singlet

- Flavor charges of SM fermions are such that only the top quark has dimension 4 Yukawa interactions
Model (continued)

- S acquires a VEV at the EW scale, breaks $U(1)_S$ spontaneously.
- Pseudoscalar component of S is eaten to give mass to $U(1)_S$ gauge boson, Z'.
- S acts as the messenger of both flavor sym. breaking as well as EW sym. breaking.
- $U(1)_F$ is broken by the VEV of a flavon scalar, F, as well as softly at the TeV scale.
- There are additional vector-like fermions at the TeV scale, charged under $U(1)_S$ and $U(1)_F$.

The Yukawa interactions of the light fermions, after integrating out heavy vector-like fermions, appear as higher dimension operators.
Model (continued)

- The Yukawa interactions of the light fermions have a hierarchical pattern of the form:

\[
\left(\frac{S^\dagger S}{M^2} \right)^n \left(\frac{F_i}{M} \right)^{n_1} \left(\frac{F_i^\dagger}{M} \right)^{n_2} f_{ij} \overline{q}_{iL} d_{jR} H
\]

- Similarly for the up sector
- The observed fermion mass hierarchy and mixings are reproduced in powers of \(\epsilon \)

\[
\epsilon \equiv \frac{\langle S \rangle}{M} \sim \frac{1}{7} \Rightarrow \text{"Little hierarchy"}
\]
Model (continued)

\[L_Y = h_{33}^u \bar{q}_{3L} u_{3R} \tilde{H} \]

\[+ \left(\frac{S^+ S}{M^2} \right) \left[h_{33}^d \bar{q}_{2L} d_{3R} H + h_{22}^u \bar{q}_{2L} u_{2R} \tilde{H} + h_{23}^u \bar{q}_{2L} u_{3R} \tilde{H} + h_{32}^u \bar{q}_{3L} u_{2R} \tilde{H} \right] \]

\[+ \left(\frac{S^+ S}{M^2} \right)^2 \left[h_{22}^d \bar{q}_{2L} d_{2R} H + h_{23}^d \bar{q}_{2L} d_{3R} H + h_{32}^d \bar{q}_{3L} d_{2R} H + h_{12}^u \bar{q}_{1L} u_{2R} \tilde{H} \right] \]

\[+ h_{21}^u \bar{q}_{2L} u_{1R} \tilde{H} + h_{13}^u \bar{q}_{1L} u_{3R} \tilde{H} + h_{31}^u \bar{q}_{3L} u_{1R} \tilde{H} \]

\[+ \left(\frac{S^+ S}{M^2} \right)^3 \left[h_{11}^u \bar{q}_{1L} u_{1R} \tilde{H} + h_{12}^d \bar{q}_{1L} d_{1R} H + h_{13}^u \bar{q}_{1L} d_{2R} H + \right] \]

\[h_{21}^d \bar{q}_{2L} d_{1R} H + h_{13}^d \bar{q}_{1L} d_{3R} H + h_{31}^d \bar{q}_{3L} d_{1R} H \] \[+ h.c. \]

All couplings: \(h_{ij}^u, h_{ij}^d \sim O(1) \)
Fit to Fermion Masses & CKM mixings

To leading order in ϵ:

$$(m_t, m_c, m_u) \approx \left(h_{33}^u, h_{22}^u, \varepsilon^2, h_{11}^u - \frac{h_{12}^u h_{21}^u}{h_{22}^u} \varepsilon^6 \right)$$

$$|V_{us}| \approx \frac{h_{12}^d}{h_{22}^d} - \frac{h_{12}^u}{h_{22}^u} \epsilon^2$$

$$(m_b, m_s, m_d) \approx \left(h_{33}^d, h_{22}^d, \varepsilon^4, h_{11}^d \varepsilon^6 \right)$$

$$|V_{cb}| \approx \frac{h_{23}^d}{h_{33}^d} - \frac{h_{23}^u}{h_{33}^u} \epsilon^2$$

$$(m_\tau, m_{\mu}, m_e) \approx \left(h_{33}^\ell, h_{22}^\ell, \varepsilon^4, h_{11}^\ell \varepsilon^6 \right)$$

$$|V_{ub}| \approx \frac{h_{13}^d}{h_{33}^d} - \frac{h_{12}^u h_{23}^d}{h_{22}^d h_{33}^d} - \frac{h_{13}^u}{h_{23}^u} \epsilon^4$$

With $\epsilon \sim 1/6.5$, a good fit is obtained for:

$$\left\{ h_{33}^u, h_{22}^u, h_{11}^u - \frac{h_{12}^u h_{21}^u}{h_{22}^u} \varepsilon^6 \right\} = \{0.96, 0.14, 0.95\}$$

$$|V_{us}| \sim 0.2,$$

$$\left\{ h_{33}^d, h_{22}^d, h_{11}^d \right\} = \{0.68, 0.77, 1.65\}$$

$$|V_{cb}| \sim 0.04,$$

$$\left\{ h_{33}^\ell, h_{22}^\ell, h_{11}^\ell \right\} = \{0.42, 1.06, 0.21\}$$

$$|V_{ub}| \sim 0.004$$
Higgs Sector and Z'

- Higgs potential invariant under SM and $U(1)_S$

$$V(H,S) = -\mu_H^2 (H^\dagger H) - \mu_S^2 (S^\dagger S) + \lambda_H (H^\dagger H)^2$$

$$+ \lambda_S (S^\dagger S)^2 + \lambda_{HS} (H^\dagger H)(S^\dagger S)$$

$$M_H^2 = \begin{pmatrix} 2\lambda_H & \lambda_{HS} \alpha \\ \lambda_{HS} \alpha & 2\lambda_S \alpha^2 \end{pmatrix} 2v^2; \quad \alpha \equiv \frac{v_s}{v}$$

$h^0 = h \cos \theta + s \sin \theta$

$m_{Z'}^2 = 2g_E^2 v_s^2$

$s^0 = -h \sin \theta + s \cos \theta$

- $\theta =$ mixing angle in the Higgs sector

- Z' does not couple to any SM particles directly

$g_E : U(1)_S$ gauge coupling
K-Kbar and D-Dbar mixing

\[K^0 - \overline{K}^0 \]

- \(\Delta m_K \sim 10^{-16} - 10^{-17} \) GeV for \(m_S \sim 100 \) GeV
- \(\Delta m_{K(\text{expt})} = 3.5 \times 10^{-15} \)
- Diagram goes as \(1/m_s^4 \)
- So \(S \) cannot be much smaller than 100 GeV

\[D^0 - \overline{D}^0 \]

- Enhanced compared to K-Kbar
- \(\Delta m_D \sim 10^{-14} \) GeV for \(m_S \sim 100 \) GeV
- \(\Delta m_{D(\text{expt})} = 1.6 \times 10^{-14} \)
- \(\beta \) cannot be much larger than \(\epsilon \)
- So \(S \) cannot be much smaller than 100 GeV
New Physics Signals at the LHC

- New particles in the Model:
 - A scalar Higgs, s, $m_s > 100$ GeV
 - An extra gauge boson, Z', can be very light
 - Heavy vector-like quarks and leptons at the TeV scale

- Without mixing, coupling of h^0 to SM fermions are identical to that in SM

- And coupling of s^0 to SM fermions are flavor dependent:
 - $(t,b,\tau;c,s,\mu;u,d,e) = (0,2,2;2,4,4;6,6,6)$
 - These involve 2 parameters: θ, $v_s/v = \alpha$
Higgs Decays:

- Because of Flavor dependence of the Yukawa couplings of s^0 and mixing, BR for H to various final states is altered substantially.
- BR figures for $\theta=0^\circ, 26^\circ$
- For $\theta=0^\circ$, BR’s are the same as in the SM
- For all plots, $m_S=100$ GeV and $\alpha=1$
$h \rightarrow 2x$ for $\theta=0^\circ$

Higgs Branching Ratios in Model, $\theta=0$

- $h \rightarrow bb$
- $h \rightarrow cc$
- $h \rightarrow W^+W^-$
- $h \rightarrow ZZ$
- $h \rightarrow tt$
- $h \rightarrow \tau\tau$
- $h \rightarrow gg$
- $h \rightarrow \gamma\gamma$
- $h \rightarrow \mu\mu$
- $h \rightarrow Z\gamma$
$h \rightarrow 2x$ for $\theta = 26^\circ$
For $\theta=20^\circ$ and 26°, gg, $\gamma\gamma$ BR's enhanced substantially compared to SM

- The effect is most dramatic for $\theta=26^\circ$

- For a light Higgs, $m_h \sim 115$ GeV, the usually dominant bb mode is highly suppressed

- $\gamma\gamma$ mode is enhanced by a factor of 10 compared to SM

- Potential discovery of the Higgs via this mode at the LHC
h→WW mode

- In SM, h→bb and h→WW* crossover occurs at m_h~135 GeV

- In our model for θ=20° (for example) this crossover takes place sooner (~110 GeV).

- As a result, Tevatron experiments will be more sensitive to a lower mass range of Higgs than in SM
Prediction for rare decays

- **Rare top decays**
 - $t \rightarrow ch$, $\text{BR} \sim 10^{-3}$ for $m_h \sim 150$ GeV
 - $\text{BR for SM} \sim 10^{-14}$
 - With $\sigma_{t \bar{t}} \sim 800$ fb, this decay will be observable, and can be a significant mode for Higgs production.

- **Rare B decays**
 - $B_s \rightarrow \mu^+ \mu^-$, $\text{BR} \sim 10^{-9}$
 - Current limit from Tevatron: $\text{BR} < 4.5 \times 10^{-8}$
Production and Decay of Heavy Vector-Like Fermions

- Our framework requires heavy vector-like quarks and leptons: $Q_L, Q_R, U_L, U_R, D_L, D_R, E_L, E_R$, at the TeV scale

- At LHC, $\sigma_{Q\bar{Q}} \sim 60$ fb for $m_Q=1$ TeV
- We need several such vector-like quarks
- $\sigma_{\text{total}} \sim$ few hundred fb

- $Q \rightarrow qs, Q \rightarrow qh, h \rightarrow ZZ, s \rightarrow ZZ$ or $Z'Z'$
- Signal: 2 high pT jets + 4Z or 4Z' bosons
TeV Completion (2 Generation)

- Symmetries: SM + U(1)$_S$+U(1)$_F$
 - U(1)$_S$ is local, broken at EW scale, $\langle S \rangle$
 - U(1)$_F$ broken at TeV scale, $\langle F \rangle$. This global Symmetry is also broken softly by the Higgs pot.
 - 3 Generation model adds 3 U(1)$_F$

- q_{3L}, u_{3R} have no U(1)$_F$ charge
- All other quarks carry U(1)$_F$ charges

- Heavy vector-like quarks are introduced: $Q_{iL,R}$, $D_{iL,R}$, $U_{iL,R}$
Table of Charge Assignments

<table>
<thead>
<tr>
<th>Field</th>
<th>$U(1)_Y$</th>
<th>$U(1)_S$</th>
<th>$U(1)_F$</th>
<th>Field</th>
<th>$U(1)_Y$</th>
<th>$U(1)_S$</th>
<th>$U(1)_F$</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>$1/2$</td>
<td>0</td>
<td>0</td>
<td>Q_{3L}</td>
<td>$1/6$</td>
<td>-1</td>
<td>3</td>
</tr>
<tr>
<td>S</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Q_{3R}</td>
<td>$1/6$</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Q_{4L}</td>
<td>$1/6$</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>q_{3L}</td>
<td>$1/6$</td>
<td>0</td>
<td>0</td>
<td>Q_{4R}</td>
<td>$1/6$</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>q_{2L}</td>
<td>$1/6$</td>
<td>0</td>
<td>2</td>
<td>U_{1L}</td>
<td>$2/3$</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>u_{3R}</td>
<td>$2/3$</td>
<td>0</td>
<td>0</td>
<td>U_{1R}</td>
<td>$2/3$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>u_{2R}</td>
<td>$2/3$</td>
<td>0</td>
<td>3</td>
<td>U_{2L}</td>
<td>$2/3$</td>
<td>-1</td>
<td>3</td>
</tr>
<tr>
<td>d_{3R}</td>
<td>$-1/3$</td>
<td>0</td>
<td>-1</td>
<td>U_{2R}</td>
<td>$2/3$</td>
<td>-1</td>
<td>3</td>
</tr>
<tr>
<td>d_{2R}</td>
<td>$-1/3$</td>
<td>0</td>
<td>3</td>
<td>D_{1L}</td>
<td>$-1/3$</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>Q_{1L}</td>
<td>$1/6$</td>
<td>-1</td>
<td>-1</td>
<td>D_{1R}</td>
<td>$-1/3$</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>Q_{1R}</td>
<td>$1/6$</td>
<td>-1</td>
<td>0</td>
<td>D_{2L}</td>
<td>$-1/3$</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Q_{2L}</td>
<td>$1/6$</td>
<td>1</td>
<td>1</td>
<td>D_{2R}</td>
<td>$-1/3$</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Q_{2R}</td>
<td>$1/6$</td>
<td>1</td>
<td>2</td>
<td>$D_{3L,R}$</td>
<td>$-1/3$</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
UV Completion

With these charge assignments, only the following dimension 4 interactions involving SM particles are allowed:

\[L_Y = f_1 \bar{q}_{3L} u_{3R} \tilde{H} \]
\[+ f_2 \bar{q}_{3L} Q_{1R} S + f_3 \bar{D}_{1L} d_{3R} S^\dagger + f_4 \bar{q}_{2L} Q_{2R} S^\dagger + f_5 \bar{U}_{1L} u_{3R} S \]
\[+ f_6 \bar{q}_{2L} Q_{3R} S + f_7 \bar{U}_{2L} u_{2R} S^\dagger + f_8 \bar{D}_{3L} d_{2R} S + h.c. \]

- \(f_i \)'s are dimensionless couplings \(\sim 1 \)
- Only top quark has direct EW sym breaking connection
- Other couplings involve S, but not H or F
- EW sym breaking is communicated to lighter quarks or leptons by S.
UV Completion

Dimension 4 couplings involving just the heavy vector-like fermions are:

\[
L_Y = f_9 \overline{Q}_{1R} Q_{1L} F + f_{10} \overline{Q}_{1L} D_{1R} H + f_{11} \overline{Q}_{2R} Q_{2L} F + f_{12} \overline{Q}_{2L} U_{1R} \tilde{H} +
\]

\[
f_{13} \overline{U}_{1R} U_{1L} F + f_{14} \overline{Q}_{3R} Q_{3L} F^\dagger + f_{15} \overline{Q}_{3L} U_{2R} \tilde{H} + f_{16} \overline{Q}_{2L} Q_{4R} S^\dagger +
\]

\[
f_{17} \overline{Q}_{4L} Q_{2R} S + f_{18} \overline{Q}_{4R} Q_{4L} F^\dagger + f_{19} \overline{Q}_{4L} D_{2R} H + f_{20} \overline{D}_{2R} D_{2L} F^\dagger +
\]

\[
f_{21} \overline{D}_{2L} D_{3R} S + M \overline{D}_{1R} D_{1L} + M \overline{D}_{3L} D_{3R} + M \overline{U}_{2R} U_{2L} + h.c.
\]
UV Completion

Integrating out the heavy fermions in the tree level diagram composed from the couplings:

\[f_2 \bar{q}_{3L} Q_{1R} S + f_9 \bar{Q}_{1R} Q_{1L} F + f_{10} \bar{Q}_{1L} D_{1R} H + M \bar{D}_{1R} D_{1L} + f_3 \bar{D}_{1L} d_{3R} S^\dagger \]

\[\Rightarrow L_{Y}^{\text{eff}} = f_2 f_3 f_9 f_{10} \left(\frac{F}{M} \right) \left(\frac{S^\dagger S}{M^2} \right) \bar{q}_{3L} d_{3R} H + h.c. \]

Similarly for other interactions
Conclusions

- Presented a TeV scale model of flavor
- Only top quark directly participates in EW symmetry breaking
- All lighter quarks participate via a messenger field, a complex scalar, S
- Fermion masses and mixings are reproduced by breaking of a flavor symmetry at the TeV scale
- S also acts a messenger for EW symmetry breaking

- **New Physics:**
 - A singlet scalar S, light Z', and vector-like fermions (TeV)
 - Observable new signals at the LHC for Higgs discovery, Z' and TeV scale vector-like fermions