Recent progress in the AdS₄/CFT₃ correspondence

James Sparks (Oxford)

Based on work with N. Benishti, Y.-H. He, D. Martelli, D. Rodríguez-Gómez

35th International Conference on High Energy Physics, Paris 22 July 2010

James Sparks (University of Oxford)

22 July 2010 1 / 10

- 4 同 ト 4 ヨ ト 4 ヨ ト

Significant progress recently in understanding AdS_4/CFT_3 duality in M-theory.

Type IIB	M-theory
$AdS_5 \times \mathbf{Y}_5$	$AdS_4 imes Y_7$
$\int_{Y_5}F_5=N$	$\int_{\mathbf{Y}_7} * \mathbf{G} = \mathbf{N}$
(Y₅, g _{Y₅}) admits Killing spinor ⇒ Sasaki-Einstein 5-manifold	$({f Y}_7,{f g}_{{f Y}_7})$ admits ${f d}>1$ Killing spinors \Rightarrow Sasaki-Einstein 7-manifold

Equivalently start with Mink \times C(Y) where C(Y) is a Calabi-Yau cone: so

$$g_{\mathsf{C}(\mathsf{Y})} \,=\, \mathrm{d} \mathsf{r}^2 \,+\, \mathsf{r}^2 g_\mathsf{Y} \,=\, \frac{\partial^2 \mathsf{r}^2}{\partial z_i \partial \overline{z}_j} \,\mathrm{d} z_i \mathrm{d} \overline{z}_j$$

is Ricci-flat and Kähler (z_i local complex coordinates). AdS backgrounds are near horizon limits of N D3-branes/M2-branes placed at {r = 0}.

< ロ > < 同 > < 回 > < 回 > < 回

Maximally SUSY case:

M2-brane theory discovered by [Aharony-Bergman-Jafferis-Maldacena] (ABJM).

22 July 2010 3 / 10

イロト イポト イヨト イヨト

What about theories with less SUSY (different CY cones/Sasaki-Einstein)? Simplest construction is to orbifold:

Type IIB

Finite (abelian) subgroup $\Gamma \subset SU(3) \curvearrowright S^5 \subset \mathbb{C}^3$.

Corresponding action on $\mathcal{N} = 4$ SYM with gauge group $U(|\Gamma|N)$. Projection onto invariants gives $\mathcal{N} = 1$ quiver gauge theory with gauge group $U(N)^{|\Gamma|}$.

M-theory

 $\begin{array}{l} \text{May similarly take} \\ \Gamma \subset SU(4) \curvearrowright S^7 \subset \mathbb{C}^4. \end{array}$

However, $|\Gamma|$ must divide the original CS level **k**, leading to an additional $\mathbb{Z}_{|\Gamma|}$ quotient, *e.g.* $\Gamma = \mathbb{Z}_2$ projection of ABJM theory leads to an M2-brane theory on $\mathbb{C}^4/\mathbb{Z}_2 \times \mathbb{Z}_2$.

In fact it has been argued that M2-branes on certain \mathbb{C}^4/Γ do not have a Lagrangian description.

In both cases, may Higgs the theories to obtain new theories in the IR, dual to branes on partial resolutions of the orbifolds.

Consider **N** D3-branes on a CY cone singularity that may be resolved to a smooth non-compact CY 3-fold **X** (this is *not* true for all singularities):

- The gauge theory on the D3-branes at the singularity is a quiver gauge theory, with χ(X) = Euler number of X nodes. In simple cases, this means a U(N)^{χ(X)} quiver gauge theory.
- Each node corresponds to a mutually BPS fractional brane: a bound state of D-branes wrapping collapsed cycles at the singularity.
- The bifundamentals (arrows) are open strings between these fractional branes.

The mathematics of this is also rather well-understood: representations of the quiver correspond to coherent sheaves on $X = CY_3$, which are D-branes.

イロト 不得下 イヨト イヨト 二日

This understanding of D3-branes can be used to understand some M2-brane theories [Aganagic, Martelli-JFS, Hanany-Zaffaroni].

Start with the T-dual to the D3-branes, namely N D2-branes on $\mathsf{Mink}_3\times\mathbb{R}\times\mathsf{CY}_3.$ The effective gauge theory is the (2+1)-dim reduction of the (3+1)-dim quiver theory.

On the resolved $X = CY_3$, there are various two-cycles. Pick one and turn on k units of RR two-form flux through it. This

- Fibres the M-theory circle over the $\mathbb{R} \times CY_3$ geometry.
- On a fractional D4-brane wrapped on the cycle, this induces the CS coupling $k \int \text{Tr}(\mathbf{A} \wedge d\mathbf{A} + \frac{2}{3}\mathbf{A}^3)$ via the Wess-Zumino couplings on its worldvolume.

To preserve SUSY, the size of the two-cycle is also fibred over the \mathbb{R} -direction. Lifting to M-theory, precisely describes N M2-branes on $Mink_3 \times CY_4$.

One can similarly add RR four-form flux through (collapsed) four-cycles (M-theory lift not well-understood), and **m** units of RR zero-form flux. The latter leads to a massive Type IIA solution (no lift) with CS levels in the quiver satisfying $\sum_{nodes i} \mathbf{k}_i = \mathbf{m}$ [Gaiotto-Tomasiello].

Example [Martelli-JFS]: begin with the quiver

$$\begin{array}{cccc} U & A_i & V \\ & & & \\ & &$$

Describes D3-branes on the CY 3-fold $z_0^{2n} + z_1^2 + z_2^2 + z_3^2 = 0$.

May be resolved with a single \mathbb{CP}^1 . Adding **k** units of F_2 flux leads to CS levels $(\mathbf{k}, -\mathbf{k})$, dual to M2-branes on CY 4-fold $\{\mathbf{z}_0^n + \mathbf{z}_1^2 + \mathbf{z}_2^2 + \mathbf{z}_3^2 + \mathbf{z}_4^2 = \mathbf{0}\}/\mathbb{Z}_k$.

イロト 不得下 イヨト イヨト 二日

Type IIB

For a D3-brane quiver theory, changing the ranks of the gauge groups adds fractional branes.

This is constrained by gauge anomaly cancellation, and breaks conformal invariance.

M-theory

No gauge anomalies in (2 + 1)-dims.

In understood examples, such as the previous slide, different ranks correspond to adding different torsion G-flux to the conformal theory [ABJ, Martelli-JFS] *i.e.* turning on a discrete "Wilson line" C-field through H^{tor}₃(Y₇, Z).

The ranks are constrained by SUSY at the quantum level. In the example above, find $U(N + I)_k \times U(N)_{-k}$ where necessarily $0 \le I \le nk$. This matches perfectly with the computation of $H_3(Y_7, \mathbb{Z}) \cong \mathbb{Z}_{nk}$.

・ロト ・聞ト ・ヨト ・ヨト

For the quiver theory for N D3-branes, the central U(1)s in $U(N)^{\chi}$ decouple in the IR, leading to an $SU(N)^{\chi}$ gauge theory: anomalous U(1)s gain a mass via GS mechanism, while the couplings for non-anomalous go to zero in the IR.

For M2-brane theories the corresponding **U(1)** sector is much more subtle [Benishti-Rodríguez-Gómez-JFS].

dim $H_2(Y_7, \mathbb{R})$ of the U(1)s are dual to abelian gauge fields in AdS_4 coming from reduction of C_3 on two-cycles. In contrast to the situation in AdS_5 , there are different quantizations of such abelian gauge fields in AdS_4 , in fact an $SL(2, \mathbb{Z})$ multiplet for each, and each is generically dual to a different CFT [Witten, Marolf-Ross, *etc*].

E.g. for a given abelian gauge field A_{μ} in AdS_4 , may take conformal boundary conditions where either E = 0 or B = 0. Interchanged by an action of S. [Witten]: start with a CFT with a U(1) current, and then coupling this to a new dynamical U(1) gauge field. Thus M2-brane quiver theories which contain an SU(N) gauge group can be related by an action of S to a theory with this replaced by a $U(1) \times SU(N)$ gauge group.

In general these CFTs, with different quantizations in AdS_4 , have quite different properties.

For example: may consider M2-branes wrapped on (non-SUSY) two-cycles in \mathbf{Y}_7 , or M5-branes wrapped on (SUSY) five-cycles in \mathbf{Y}_7 .

An AdS_4 quantization with E = 0 does not allow electrically charged states in the bulk, and hence does not allow M2-branes charged under this U(1). Conversely, B = 0 does not allow magnetic charges in the bulk, ruling out M5-branes.

The SUSY wrapped M5-branes can be identified with baryonic-type operators for SU(N) gauge groups, as for D3-branes. The **S**-action effectively gauges the U(1), so that these baryonic operators are no longer gauge invariant in the **S**-dual theory. Instead it has been conjectured [Imamura] that the non-BPS M2-branes in this theory are monopole operators for the gauged U(1)s.

イロト イポト イヨト イヨト 二日