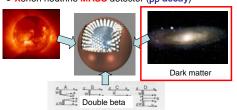


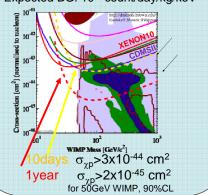
Status of XMASS experiment

Ko Abe (ICRR, University of Tokyo)


on behalf of the XMASS Collaboration

1. Introduction

➤ What's XMASS


Multi purpose low-background and low-energy threshold experiment with liq. Xe

- Xenon detector for Weakly Interacting MASSive Particles (DM search)
- Xenon MASSive detector for solar neutrino (pp/7Be)
- Xenon neutrino MASS detector (ββ decay)

Expected sensitivity for Dark Matter

- 100kg xenon target
- Expected BG: 10⁻⁴ count/day/kg/keV

The XMASS Collaboration

Kamioka Observatory, ICRR, Univ. of Tokyo:

- Y. Suzuki, M. Nakahata, S. Moriyama, M. Yamashita, Y. Koshio,
- A. Takeda, K. Abe, H. Sekiya, H. Ogawa, K. Kobayashi, K. Hiraide, K. Ueshima, A. Shinozaki, H. Nishiie, S. Hirano

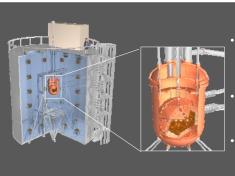
IPMU, University of Tokyo: K. Martens, J.Liu

Kobe University: Y. Takeuchi, K. Otsuka Saga University: H. Ohsumi

Tokai University: K. Nishijima, D. Motoki

Gifu University: S. Tasaka

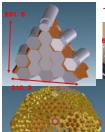
Waseda University: S. Suzuki Yokohama National University: S. Nakamura, I. Murayama, K. Fujii


Miyagi University of Education: Y. Fukuda STEL, Nagoya University: Y. Itow, K. Masuda, H. Uchida, Y. Nishitani

Seoul National University: S.B. Kim

Sejong University: Y.D. Kim

KRISS: Y.H. Kim, M.K. Lee, K. B. Lee, J.S. Lee

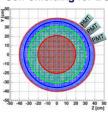

2. Construction of The XMASS 800kg detector

- \$10mx10m(H) water tank
 active shield for cosmic ray
 muons passive shield for
 gammas and neutrons
- 857kg Liquid Xenon is enclosed with 642 PMTs in the inner vessel chamber (IVC).
- PMT holder and IVC are kept inside vacuum chamber, outer vessel chamber (OVC).

Triangle: basic structure PMT Hamamatsu

QE 28-39% **047** 126.6 R10789-11MOD

- 60 triangles made PMT holder
- One triangle has ~10 PMTs
- ●Total: 642 PMTs
- ●630 hexagonal PMTs (R10789-11)
- 12 circle shape PMTs (R10789-11MOD) at peak position.
- Photo coverage: 62.4%
- Outside diameter 1113
- •Inner diameter ~800



copper filler.

3. Background reduction techniques

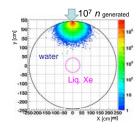
Self-shielding for BG from detector material

Liquid Xenon has large Z and acts as a shield of γ from the detector material.

The largest BG source is PMT. (We developed new ulatra low RI PMT with Hamamatsu. RI level is 1/100 of ordinary PMT. Still largest RI source.)

238U 0.704 +/- 0.282 mBq/PMT 232Th 1.51 +/- 0.31 mBq/PMT 60Co 2.92 +/- 1.61 mBq/PMT 40K <5.10E-03

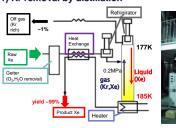
20cm Xe is used for shield Fiducail Volume is 100kg (Full Volume is 857kg)

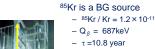

gammas < 10⁻⁵ counts/day/kg/keV

Water shield for external BG

Water tank is used as a passive shield for external γ and n

Fast neutron flux @ Kamioka mine: ~1.2 x10⁻⁵ /cm²/sec

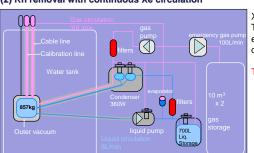

Assuming all neutron's energies are 10 MeV very conservatively



5m- ϕ water tank is large enough to shield n and γ

Xenon purification for reducing internal BG

(1) Kr removal by distillation



Boiling point (@0.2MPa) Xe 178K Kr 140K~150K

Target: Kr < 1ppt (rejection factor of 1/10⁵ is required)

(2) Rn removal with continuous Xe circulation

Xe circulation system To remove Radon emanated from detector materials

Target: 222Rn<0.6mBq/ton