

Electron and Photon reconstruction and identification with the CMS detector in pp collisions at sqrt(s)=7 TeV

Electron

Photon

Outline

- Physics with electrons and photons at CMS
- Electron/Photon triggers
- Electron candidates in Minimum Bias events
- Prompt electrons from W/Z decays electron reconstruction commissioning electron selections commissioning electron variables commissioning
- Electron fake rate measurement
- Photon reconstruction
- Selection of photon enriched sample
- Converted photons

Roberto Salerno, ICHEP July 22-28, 2010, Paris 22

Physics with e and γ at LHC

On the critical paths of LHC major discoveries $H \rightarrow ZZ^* \rightarrow 4e, H \rightarrow \gamma\gamma, Z' \rightarrow ee,...$ Vital objects to establish calibration and SM candles $Z \rightarrow ee, W \rightarrow ev,...$

Performance for physics depends on: efficiency, energy resolution, particle identification, isolation

CMS Detector

- Pixels: Important material budget before ECAL → dedicated algorithms
 ~ 1 m² of Si sensors, 65 M channels, 1440 modules
 - $r = 4.7.11 \text{ cm} \cdot I = 52 \text{ cm}$

Roberto Salerno, ICHEP July 22-28, 2010, Paris

Level I and High Level Trigger

Events filtered online in two steps: Level I (hardware) High Level Trigger (software)

Trigger efficiencies has been measured on Minimum Bias data

Electrons in the ECAL barrel (black dots), electrons in the ECAL endcaps (red empty squares)

Electron reconstruction

Energy clustering to recover bremsstrahlung
Superclusters are built by collecting clusters of crystals within in φ window

Electron seeding two complementary algorithms

• Start from ECAL superclusters and search for compatible hits in the tracker inner layers (ECAL driven)

• Start from tracks (Tracker driven)

Electrons tracking

• Bremsstrahlung energy loss modeled with a mixture of Gaussians (Gaussian Sum Filter)

Electrons preselection

- Track Supercluster position matching cuts
- Multivariate analysis

First electron commissioning

assessment with Minimum Bias events

ICHER

Roberto Salerno, ICHEP July 22-28, 2010, Paris

Electron commissioning at high pT

with more statistics use electrons from W/Z

W and Z selections are used to commission reconstruction and measure efficiencies

- W Selection:
- high MET
- I high energy ECAL supercluster
- little hadronic activity

- Z Selection:
- Tag: identified/isolated electron
- Probe: I ECAL supercluster
- Invariant mass

Figures are for selected electrons

10³⁴/cm²/s

[□]|η| < 2.1

Electron reconstruction

ECAL driven seeding

- Start by high ET ECAL supercluster and extrapolate toward innermost tracker layers
- Pair of hits are selected within a window around the expected position (r-phi and r-z planes)

Electron reconstruction efficiencies

Detector	Method	Data	MC
Barrel	Z Tag&Probe	0.993 ± 0.014	0.985
Endcap	Z Tag&Probe	0.968 ± 0.034	0.961

Electron selections

Electron selection is based on Identification, Isolation, Conversion rejection variables

Selection for first physics uses **simple cuts** on the discriminating observables The selection is tuned to different tightness e.g. here 80% and 95% efficiencies

A more elaborate selection is obtained using an **electron classification** to separate electrons as function of the radiated bremsstrahlung and E/p variables (Cuts in Categories)

Figures are normalized to integrated luminosity

Electron variables

Examples of discriminating variables:

- supercluster shower spread in η ($\sigma_{i\eta i\eta}$)
- electron isolation
 - combined ECAL/Tracker/HCAL isolations
 - removal of the electron footprint in each detectors

Selection efficiencies

Simple Cuts Selec	Z Tag&Probe		
	Measured efficiency	Error (stat. + syst)	MC efficiency
WP95 Barrel	92.5%	3.2%	95.4%
WP95 Endcap	86.4%	6.7%	92.9%
WP80 Barrel	77.5%	4.7%	85.1%
WP80 Endcap	75.1%	8.6%	76.2%

Cuts in Categories Selection Z Tag&Probe MC Measured Error efficiency efficiency (stat. + syst) **CiC Loose Barrel** 96.4% 97.0% 2.1% 94.1% **CiC Loose Endcap** 4.7% 95.3% 89.3% 89.3% **CiC Tight Barrel** 3.4% CiC Tight Endcap 85.5% 6.5% 79.4%

Electron selection efficiency ratio between data and MC The shaded region is the combined efficiency data/MC ratio

Fake rate measurement

Electron fake rate per reconstructed electron as a function of ET in data and simulation

Photon reconstruction

 $E_{3\times3}/E_{SC}$ is used to separate converted from unconverted photons

Photon objects are reconstructed from the superclusters

Supercluster selection

- HLT Photon I 5
- ET > 20 GeV
- SC in $|\eta| \leq 2.5$ but excluding barrel/endcap transition region
- H/E < 0.05

More details on photon in the R.Shyang's talk in the QCD session

Photon selection

candidates /5GeV

10

- 10

10⁻¹

10⁻²

0

Data

MC y partonic

MC y ISR/FSR

200 250 Photon E_T (GeV)

MC other

Simple selection allows to define a sample with more than 50% purity from prompt photons with an efficiencies around 90% for the Barrel and 80% for the Endcap

Variable	Barrel photon	Endcap photon	
photon E _T	> 30 GeV		
tracker isolation	< 2.0 GeV		
ECAL isolation	< 4.2 GeV		
HCAL isolation	< 2.2 GeV		
(hadronic/EM) energy	<0.05		
shower shape $\sigma_{i\eta i\eta}$	<0.01	<0.03	
	Require not to match a pixel hit		

ECAL barrel

 $\sqrt{s} = 7 \text{ TeV}$

 $L = 74 \text{ nb}^{-1}$

Inl < 1.4442

50

100

150

CMS Preliminary 2010

10

10

10²

10

10⁻²

candidates /5GeV

- 10

Photon purity increases with ET Roberto Salerno, ICHEP July 22-28, 2010, Paris

AL-seeded conversionsonverted photons

Selection

- $|\Delta \cot \theta|$ between the tracks at vertex < 0.3
- $|\Delta \phi|$ between the tracks at vertex < 0.2
- P(vertex) returned by fitter > 0.0005.

Conversion p/E with p from the tracks and E from the supercluster

Variable may be used to extract photon purity in physics analysis

Conclusions

- With 200 nb⁻¹ of analyzed data at sqrs(s) = 7 TeV electrons from W and Z have been measured
- CMS has commissioned the **key observables** for the measurement, identification and isolation of primary ("prompt") electrons and photons
- Trigger, reconstruction and electron selection efficiencies have been measured and found to be very close to Monte Carlo simulation
- **Electron fake** rate has been measured and found in good agreement with expectation
- **Photon variables** have been compared between data and simulation for background and photon enriched samples and found in very good agreement with Monte Carlo expectation

BACKUP

Roberto Salerno, ICHEP July 22-28, 2010, Paris

ICHEP Paris 2010 Roberto Salerno, ICHEP July 22-28, 2010, Paris

22

