Inclusive Photoproduction of ρ^0, K^{*0} and ϕ Mesons at HERA

Andrei Rostovtsev (ITEP)

on behalf of
H1 Collaboration

Published in

ICHEP 2010, 23d July, Paris
ep kinematics

energy c.m.: $\sqrt{s} = 300-320$ GeV
hadronic energy: $W = m(\gamma^*p)$
photon virtuality: Q^2
two regions: $Q^2 \approx 0$ GeV2 — photoproduction
 $Q^2 > 1$ GeV2 — electroproduction (DIS)
Motivation

- e^+e^- collisions at LEP: distortion of ρ^0 line shape and shift towards lower masses was observed
- RHIC:
 - $\sqrt{s_{NN}} \sim 200$ GeV
 - $W_{\gamma p} \sim 210$ GeV
- H1:

 inclusive $\rho(770)^0$, $K^*(892)^0$ and $\phi(1020)$

ρ^0, $K^{*0}(892)$, $\phi(1020)$ measurements at HERA help to study hadronisation
Main selection criteria for event:

- H1 data 2000 with $\mathcal{L} = 36.5$ pb$^{-1}$
- Photoproduction $Q^2 < 0.01$ GeV2 with e' in ET (electron tagger)
- $174 < W < 256$ GeV $\Rightarrow <W> = 210$ GeV
- Trigger requires at least 3 tracks in the Central Tracker with $p_T > 0.4$ GeV

$\rho^0 \rightarrow \pi^+\pi^-$ \hspace{1cm} $K^{*0} \rightarrow K\pi$ \hspace{1cm} $\phi \rightarrow K^+K^-$
Clear signals of ρ^0, K^* and ϕ mesons are observed.
Bose-Einstein Correlations (BEC)

A modification of ρ^0 signal produced in γp collisions is described by taking into account Bose-Einstein correlations in Monte Carlo
\(\rho^0, K^* \) and \(\phi \): cross section measurement

\[Q^2 < 0.01 \text{ GeV}^2 \, \&\& \, 174 < W < 256 \text{ GeV}, \, p_T > 0.5 \text{ GeV} \, \&\& \, |y_{\text{lab}}| < 1: \]

\[
\begin{align*}
\sigma_{\gamma p, \text{vis}}(\gamma p \rightarrow \rho^0 X) &= 25600 \pm 1800 \pm 2700 \text{ nb} \\
\sigma_{\gamma p, \text{vis}}(\gamma p \rightarrow K^{*0} X) &= 6260 \pm 350 \pm 860 \text{ nb} \\
\sigma_{\gamma p, \text{vis}}(\gamma p \rightarrow \phi X) &= 2400 \pm 180 \pm 340 \text{ nb}
\end{align*}
\]
All inclusive photoproduction cross sections measured at H1 are described by power law distribution with the same $n = 6.7$ calculated from charged hadrons.
ρ⁰, K* and φ: cross section

- invariant differential cross section can be described by power law distribution
- within rapidity range, the meson production rates are constant as a function of rapidity (within errors)
- PYTHIA and PHOJET models do not describe the shape of the measured p_T spectrum
\(\rho^0, K^* \) and \(\phi \): power law distribution

\[
\frac{f(E_T)}{E_T^{k_{\text{kin}}}} = \frac{A}{(E_T^{k_{\text{kin}}})^{2n_c}}
\]

\(f(E_T) \) is extrapolated cross section in all \(p_T \) range

\[
\frac{A}{(E_T^{k_{\text{kin}}})^{2n_c}}, \quad E_T > E_0
\]

pQCD

\[
\exp\left(-\frac{2}{\sqrt{m_T^2 p_T^2 - n_c}}\right)
\]

Thermodynamic model

\[
T = \frac{E_T}{n}
\]
\[\rho^0, K^* \text{ and } \phi: \text{ cross section fit parameters} \]

\[\frac{dE^{'kin}}{dE} \]

\[\langle E_T \rangle = \langle E_T^{\text{kin}} \rangle + m_0 \]

\[\langle p_T \rangle = \sqrt{\langle E_T^2 \rangle - m_0^2} \]

| \(\gamma p \) | \(\langle d\sigma/dy_{lab}\rangle_{|y_{lab}|<1} \text{ [nb]} \) | \((K^*0 + \bar{K}^*0)/2 \) | \(\phi \) |
|----------------|-------------------------------|----------------|---------|
| \(\gamma p \) | 23600 \pm 2700 | 5220 \pm 600 | 1850 \pm 230 |
| \(E_{T_0}/n \) | 0.151 \pm 0.011 | 0.166 \pm 0.012 | 0.170 \pm 0.012 |
| \(\langle E_T \rangle \) [GeV] | 1.062 \pm 0.018 | 1.205 \pm 0.020 | 1.333 \pm 0.022 |
| \(\langle E_T^{\text{kin}} \rangle \) [GeV] | 0.287 \pm 0.018 | 0.313 \pm 0.020 | 0.314 \pm 0.022 |
| \(\langle p_T \rangle \) [GeV] | 0.726 \pm 0.027 | 0.810 \pm 0.030 | 0.860 \pm 0.035 |
| \(pp \) | \(\langle p_T \rangle_{pp} \) [GeV] | 0.616 \pm 0.062 | 0.81 \pm 0.14 | 0.82 \pm 0.03 |
| \(Au-Au \) | \(\langle p_T \rangle_{AuAu} \) [GeV] | 0.83 \pm 0.10 | 1.08 \pm 0.14 | 0.97 \pm 0.02 |

- \(\rho^0, K^* \) and \(\phi \) are produced with about the same value of the average \(\langle E_T^{\text{kin}} \rangle \)

\[\Rightarrow \] supports a thermodynamic picture of hadronic interactions

- \(n \) is described by Monte Carlo while \(T \) is not (non pQCD)

- \(\langle p_T \rangle \) in H1 is in agreement with RHIC pp and is lower than RHIC AuAu
\(\rho^0, K^* \) and \(\phi \): comparison with RHIC

<table>
<thead>
<tr>
<th>(dN/dy)</th>
<th>(\gamma p) (H1)</th>
<th>pp (STAR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho^0)</td>
<td>236±30</td>
<td>259±40</td>
</tr>
<tr>
<td>(K^*)</td>
<td>52±7</td>
<td>51±7</td>
</tr>
<tr>
<td>(\phi)</td>
<td>18±3</td>
<td>18±1</td>
</tr>
</tbody>
</table>

Remarkable agreement between production rates in pp and photoproduction

The ratio of the production cross-sections \(R(\phi/K^*) \) measured in \(\gamma p \) is in agreement with pp results and below that for AuAu measured at about the same collision energy at RHIC.
Summary

Light $\rho(770)^0$, $K^*(892)^0$ and $\phi(1020)$ mesons photoproduction at HERA:

• first measurement in photoproduction at HERA

• the description of the ρ^0 shape of the meson is improved by taking Bose-Einstein correlations into account

• p_T-spectra are described by power law distribution

• ρ^0, K^* and ϕ are produced with about the same value of $<E_{T^{\text{kin}}}>$ ⇒ support a thermodynamic picture of hadronic interactions

• comparison with RHIC results
 • The ratio of the production cross-sections $R(\phi/K^*)$ measured in γp is in agreement with pp results at about the same collision energy at RHIC
 • Some tendency for ϕ meson production to be more abundant in Au-Au collisions is observed

• universality in p_T-spectra of hadrons at H1 is observed
Back up
ρ^0, K^* and φ: visible kinematical range

All mesons are analyzed in following:

- $|y| < 1$ in 7 p_T bins:
 - 1 bin: 0.5-0.75
 - 2 bin: 0.75-1
 - 3 bin: 1-1.5
 - 4 bin: 1.5-2
 - 5 bin: 2-3
 - 6 bin: 3-4
 - 7 bin: 4-7 GeV

Extra cuts for mesons:
- K^{*0}: 1 bin: Kaon dE/dx ident. && $\cos\theta^* < 0$; 2-3 bin: Kaon dE/dx ident.
- ϕ: 1-3 bin: Kaon dE/dx identification

bin p_T: 0.-0.25 GeV is excluded due to non description DATA and MC
bin p_T: 0.25-0.5 GeV is excluded due to big background for K^{*0} and small ϕ meson reconstructed efficiency

- $p_T > 0.5$ GeV in 4 y bins:
 - 1 bin: -1.-0.5
 - 2 bin: -0.5-0
 - 3 bin: 0.-0.5
 - 4 bin: 0.5-1

Extra cuts for mesons:
- K^{*0}: 1-4 bin: Kaon dE/dx ident. && $\cos\theta^* < 0$
- ϕ: 1-4 bin: Kaon dE/dx identification

y - rapidity of mesons
p_T - transverse momentum of mesons
Fit Procedure

$$\rho^0 \rightarrow \pi^+\pi^- \quad K^{*0} \rightarrow K\pi \quad \phi \rightarrow K^+K^-$$

Fit function: \[F(m) = S(m) + R(m) + B(m) \]

Signal \(S(m) \) = convolution of \(BW(m) \) and \(res(m, m') \)
rel. Breit-Wigner \(BW(m) = A m_0 \Gamma(m)/[\left(m^2-m_0^2\right)^2 + m_0^2 \Gamma^2(m)] \)
\[\Gamma(m) = \Gamma_0 \left(\frac{q}{q_0}\right)^{2l+1} m_0 / m \]
resolution function \(res(m, m') = 1/[2p] \cdot \frac{\Gamma_{res}}{\left(m-m'\right)^2 + \left(\Gamma_{res}/2\right)^2} \)

reflection \(R(m) \):

for \(\rho^0 \):

\(K^{*0} \rightarrow K\pi \) and \(\omega \rightarrow \pi^+\pi^-(\pi^0) \)

for \(K^{*0} \):

\(\rho^0 \rightarrow \pi^+\pi^- \), \(\omega \rightarrow \pi^+\pi^-(\pi^0) \), \(\phi \rightarrow K^+K^- \)

and self-reflection \(K^{*0} \rightarrow K\pi \)

for \(\phi \):

—

combinatorial background \(B(m) \):

for \(\rho^0 \) and \(K^{*0} \):

\(B(m) = \{M(\pi^\pm\pi^\pm) \text{ or } M(K^\pm\pi^\pm) \} \cdot \{\text{Pol}(2-3) \text{ or } (a_1+a_2 \cdot x) \cdot \exp(-a_3 \cdot x-a_4 \cdot x^2)\} \)

for \(\phi \): \(B(m) = b_1 \cdot (m^2 - 4m_k^2)^{b_2} \cdot \exp(-b_3 \cdot m) \)
ρ⁰, K* and φ: cross section calculation

Invariant differential cross section:

\[
\frac{1}{\pi} \frac{d^2 \sigma^{\gamma p}}{dp_T^2 \, dy_{lab}} = \frac{N}{\pi \cdot L \cdot BR \cdot \Phi_\gamma \cdot \epsilon \cdot \Delta p_T^2 \cdot \Delta y_{lab}}
\]

Differential cross section:

\[
\frac{d\sigma^{\gamma p}}{dy_{lab}} = \frac{N}{L \cdot BR \cdot \Phi_\gamma \cdot \epsilon \cdot \Delta y_{lab}}
\]

N - number of mesons from fit
\(\Delta p_T^2\) and \(\Delta y_{lab}\) - bin widths
\(L = 36.5 \text{ pb}^{-1}\)
\(\Phi_\gamma = 0.0127\) - photon flux
\(BR = 1.\) for ρ⁰, 0.67 for K*⁰ and 0.49 for φ

\(\epsilon = \epsilon_{\text{rec}} \cdot A_{\text{etag}} \cdot A_3 \cdot \epsilon_{\text{trig}}\) - efficiency

reconstruction efficiency for the meson \(\epsilon_{\text{rec}}\) varies from 45% to 90% (using Monte Carlo)

positron tagger acceptance \(A_{\text{etag}} = 48.5\%\)
trigger acceptance \(A_3\) varies from 50% to 95% (using Monte Carlo)
trigger efficiency \(\epsilon_{\text{trig}} \sim 90\%\) (using Monitor Triggers)
The HERA Collider

H1 and ZEUS:
- 92 - 07 years
- Lumi ~ 0.5 fb⁻¹ (each exper.)