W and Z Production at the Tevatron:
Recent Results and Prospects

Terry Wyatt

Particle Physics Group
University of Manchester

on behalf of the CDF and DØ collaborations
Overview

• Introduction:
 – Tevatron, detectors and integrated luminosity
 – Z and W production and detection
 – Motivation for precise measurements

• Recent results
 – Z transverse momentum
 • $Z \rightarrow \mu \mu$, 1 fb$^{-1}$, DØ
 – Z transverse momentum using ϕ^{*}_{η}
 • $Z \rightarrow ee$ & $Z \rightarrow \mu \mu$, 7.3 fb$^{-1}$, DØ
 – Z cross section and rapidity
 • $Z \rightarrow ee$, 2.2 fb$^{-1}$, CDF
 – W charge asymmetry
 • $W \rightarrow e\nu$, 1 fb$^{-1}$, CDF
 – re-analysis in terms of lepton A_{FB} allowing direct comparison with
 • $W \rightarrow \mu\nu$, 4.9 fb$^{-1}$, DØ
 – Z forward-backward asymmetry
 • $Z \rightarrow ee$, 4.1 fb$^{-1}$, CDF

 ➢ New for this conference
 ➢ New for winter 2010 conferences

• Prospects

N.B. W mass measurements covered elsewhere
The Fermilab Tevatron Collider

1992-95 Run I:
\[\int L dt \sim 0.1 \text{ fb}^{-1}, \ 1.8 \text{ TeV} \]

Major accelerator/detector upgrades
2002-11 Run II:
\[\int L dt \sim 9 \text{ fb}^{-1} \text{ delivered, } 1.96 \text{ TeV} \]
\[\int L dt \sim 12 \text{ fb}^{-1} \text{ expected by 2011} \]

Further running 2012-2014? - being considered
Integrated Luminosity History

Average data taking efficiency since 2002 is 84% (CDF) and 89% (DØ)
CDF

CDF detector highlight

- Large volume, high precision, charged particle tracker
 - 9-layer silicon tracker
 - 96-layer drift chamber
 - 1.4 m outer radius

DØ

DØ detector highlight

- High acceptance, low background, muon system
 - 0.5 m outer radius for DØ central tracker!
Producing W and Z in $\bar{p}p$

Proton is a composite object

- PDFs (Parton Distribution Functions)
 \[m^2_{\ell\ell} = x_1 x_2 s \]
- Gluon bremsstrahlung
 \[x_{1,2} = e^{\pm y} m_{\ell\ell}/\sqrt{s} \]

Select $\sim 10^6$ tagged $W \rightarrow \ell\nu$ and $\sim 10^5$ $Z \rightarrow \ell^+\ell^-$ events per fb$^{-1}$
Signatures of W and Z Production at the Tevatron

- $Z \rightarrow \ell^+\ell^-$: pair of charged leptons:
 - high p_T
 - isolated
 - opposite-charge
- peak in $\ell^+\ell^-$ invariant mass
Signatures of W and Z Production at the Tevatron

- \(Z \rightarrow \ell^+\ell^- \): pair of charged leptons:
 - high \(p_T \)
 - isolated
 - opposite-charge
- peak in \(\ell^+\ell^- \) invariant mass

- \(W \rightarrow \ell \nu \): single charged lepton:
 - high \(p_T \)
 - isolated
- \(E_T^{\text{miss}} \) (from \(\nu \))
 - cannot measure longitudinal \(\nu \)
- peak in “transverse mass”

\[
\text{transverse mass: } m_T = \sqrt{2p_T^\ell p_T^\nu (1 - \cos \phi_{\nu})}
\]
Signatures of W and Z Production at the Tevatron

- $W \rightarrow l \nu$: single charged lepton:
 - high p_T
 - isolated
- E_T^{miss} (from ν)
 - cannot measure longitudinal ν
- peak in “transverse mass”

$$m_T = \sqrt{2 p_T^l p_T^\nu (1 - \cos \phi_{lv})}$$
Why bother?

• Electroweak production
• Leptonic final states
• High statistics samples
• Low backgrounds

➢ Precise measurements!

• Clean probe of QCD and EW interactions
• Essential to tie standard processes down before claiming discoveries
 – either at the Tevatron or the LHC
\(Z \rightarrow \mu\mu \) transverse momentum

- \(Z \rightarrow \mu\mu, \) 1 fb\(^{-1}\), DØ
- Unfold \(p_T^Z \) resolution
- For \(p_T^Z < 30 \) GeV
 - \(\sigma_{\text{syst}} \sim 5\% \)
 - dominated by \(p_T^\mu \) resolution systematics
 - cf. \(\sigma_{\text{stat}} \sim 1\% \)
 - Restricts choice of bin widths
- Have such measurements reached the end of the road?

Data-MC agreement
Study of p_T^Z using a novel method

- a_T less susceptible to detector resolution and efficiency variations than p_T^Z
- $a_T/m_\tilde{\chi}$ even less susceptible to detector resolution
- $\Phi^*_\eta \approx a_T/m_\tilde{\chi}$
- measured using only the directions of the leptons and thus very well measured.

\[\phi^*_\eta = \tan\left(\frac{\phi_{acop}}{2}\right) \sin(\theta^*_\eta) \]

\[\cos(\theta^*_\eta) = \tanh\left(\frac{\eta^- - \eta^+}{2}\right) \]
Study of p_T^Z using a novel method

- $Z \rightarrow ee, Z \rightarrow \mu\mu; 7.3 \text{ fb}^{-1}, \text{DØ}$
- 966,000 events with $70 < m_\mu < 110 \text{ GeV}$
 - Compare corrected data to ResBos
 - with and without small-x broadening [Nadolsky, et al, Phys. Rev. D 64, 114011 (2001)]

14
Study of p_T^Z using a novel method

- At low ϕ^*_η: narrow bins, $\sigma_{\text{stat}} \sim 5$ per mille and $\sigma_{\text{syst}} \sim 1$ per mille
- Compare $Z\rightarrow ee$, $Z\rightarrow \mu\mu$ corrected data
 - ratio to ResBos
- Small-x broadening option clearly disfavoured
Z→ee total cross section and rapidity

- Z→ee, 2.2 fb⁻¹, CDF
- Electron coverage out to |η|<2.8
- Select 168000 candidate events in range |y|<2.9

Acceptance x Efficiency
- using central (C) and forward (pluq, P) electrons

\[\sigma = 256.6 \pm 0.7 \text{ (stat.)} \pm 2.0 \text{ (syst.)} \pm 15.4 \text{ (lumi)} \text{ pb} \]

cf. \[\sigma = 238.7 \pm 7.1 -7.0 \text{ pb (CTEQ6.6M NLO)} \]
\[\sigma = 248.7 \pm 5.1 -4.0 \text{ pb (MSTW2008E NNLO)} \]
$d\sigma^Z/dy$

- $d\sigma^Z/dy$ sensitive to PDFs
- Total cross section and $d\sigma^Z/dy$ in good agreement with theory
W Charge Asymmetry and PDFs

- u quark PDF is harder than d quark PDF
- W^+ (W^-) tends to be boosted along proton (antiproton) direction
- asymmetry = $(N^+ - N^-)/(N^+ + N^-)$
- We actually observe the charged lepton
- W decay partially washes out asymmetry
W Charge Asymmetry and PDFs

- Experiments published measurement in different form
 - Inclusive W boson charge A_{FB}^{C} (CDF)
 - Charged lepton A_{FB}^{C} in lepton p_T bins (DØ)

MSTW and CTEQ have problems to incorporate both CDF and DØ data into their global PDF fits.
W Charge Asymmetry and PDFs

- CDF have re-analyzed their data (stat. uncertainties only) to allow a direct comparison with DØ
- The experiments agree!
- The problem looks to be in the theory!
Forward-backward asymmetry in $Z \rightarrow ee$

4.1 fb$^{-1}$, CDF 218000 candidate events

In the rest frame of the dilepton system:

$$A_{FB} = \frac{N_F - N_B}{N_F + N_B}$$

where:

- N_F (N_B) is the number of e^- scattered in the same hemisphere as the outgoing proton (antiproton) beam.
Prospects with 10-20 fb$^{-1}$

- It would be good to see measurements of each important quantity
 - transverse momentum, rapidity, asymmetry
 - as function of m_{ll}
- Using full data set
 - from both CDF and DØ
 - in both $Z \rightarrow ee$ and $Z \rightarrow \mu\mu$
- Many of these measurements have the potential to remain statistics limited
 - scope for clever ideas!
- Potential impact on EW couplings, QCD models, PDFs
Example: Forward-backward asymmetry in $Z \rightarrow \ell \ell$

In the *rest frame* of the dilepton system:

$$A_{FB} = \frac{N_F - N_B}{N_F + N_B}$$

Could achieve a high statistical precision

$$\Delta \sin^2 \theta^\text{eff}_W \approx \pm 0.0002 \text{ (stat.)} \pm 0.0005 \text{ (PDF)} \quad \Rightarrow \quad \text{Needs work!}$$

In addition, can extract world's best a, ν couplings for light quarks
Backup Slides
$x = \begin{align*}
Q_T & \quad \text{solid red line} \\
Q_T/Q \times M_2 & \quad \text{dotted red line} \\
a_T \times \sqrt{2} & \quad \text{solid magenta line} \\
a_T/Q \times \sqrt{2} & \quad \text{dotted magenta line} \\
a_L \times \sqrt{2} & \quad \text{solid blue line} \\
a_L/Q \times \sqrt{2} & \quad \text{dotted blue line} \\
\phi_{CS} \times \sqrt{2} & \quad \text{solid green line} \\
\phi_t & \quad \text{dotted green line} \\
\tan(\phi_{acop}/2) \times 0.85 \times \sqrt{2} M_2 & \quad \text{dotted black line}
\end{align*}$
EW Cross Sections at the Tevatron

First Observed by DØ: summer 2008
At the level of simple “tree level” diagrams the EW interactions are determined by three “input” parameters.
Masses of W and Z also given in terms of coupling constants

$$m_W^2 = m_Z^2 \cos^2 \theta_W = \frac{\pi \alpha}{\sqrt{2} G_F \sin^2 \theta_W}$$

For practical purposes we use as inputs the three most precisely known EW experimental observables:
- The fine structure constant: $\alpha = e^2 / 2 \varepsilon \hbar c$
- Fermi constant (measured in muon decay $\mu^- \rightarrow e^- \bar{\nu}_e \nu_\mu$): G_F
- Z mass: m_Z

Adding QCD requires an additional constant:
- The strong coupling constant: α_s
Loops

- Loops cause running of coupling constants
 - $\alpha \rightarrow \alpha(Q^2)$
 - $\sin^2\theta_W \rightarrow \sin^2\theta_W^{\text{eff}}$
- EW observables then depend on:
 - $\alpha, G_F, m_Z, m_t, m_H$
- Basic programme:
 - Measure precisely L and R couplings of each fermion to γ, Z, W
 - Measure precisely boson self-interactions
 - Measure precisely $\alpha_s, \alpha, G_F, m_Z, m_t$
 - Test consistency of measurements with Standard Model predictions
 - Find the Higgs!
 - (or other new particles beyond the Standard Model)
• a
W Charge Asymmetry and PDFs

- CDF have re-analyzed their data (stat. uncertainties only) to allow a direct comparison with DØ