Single Top Quark Production at the Tevatron

Breese Quinn
University of Mississippi
On behalf of the CDF and DØ Collaborations

35th International Conference on High Energy Physics
Palais des Congrès, Paris July 22, 2010
Top quarks are most commonly produced in pairs through the strong interaction.

\[\sigma(t\bar{t}) = 7.46^{+0.48}_{-0.67} \text{ pb} \]

@ \(m_t = 172.5 \text{ GeV/c}^2 \)

EW processes can produce single top quarks in association with b quarks.

- **s-channel**: \(\sigma = 1.12 \pm 0.05 \text{ pb} \)
- **t-channel**: \(\sigma = 2.34 \pm 0.13 \text{ pb} \)

@ \(m_t = 170 \text{ GeV/c}^2 \)

Kidonakis PRD 74, 114012 (2006)

SM measurements

- CKM: \(|V_{tb}| \)
- Top width and polarization...
 - Width: Grohsjean, TRK02, 7/23 11:25

New Physics

- Anomalous couplings, FCNC
 - Anomalous couplings: Sharyy, TRK02, 7/23 9:20

- Resonance searches (W', H+)
 - W': Scodellaro, TRK10, 7/24 15:20
Single t production predicted 10 years before t discovered in pair production, but no evidence until 12 years after!

Half the cross section of $\tilde{t}\tilde{t}$, but much more difficult background situation.

- S:B after event selection 1:20 for Single t
- 5:1 for $\tilde{t}\tilde{t}$

Backgrounds:
- QCD, $W+$jets, $Z+$jets, Diboson, $\tilde{t}\tilde{t}$
The Data

2002-2005
- Lower instantaneous luminosities (typical peak ~1E32)
- ~1.5 fb\(^{-1}\) integrated luminosity delivered

2006-2010
- Higher instantaneous luminosities (typical peak ~3E32)
- Upgraded detectors
- ~7.5 fb\(^{-1}\) delivered

All results described in this talk have been published within the past year, and are based on 2.3-4.8 fb\(^{-1}\) of ‘good’ data.

Results presented today use up to this much...
... and at least this much.
Evidence, DØ & CDF
- DØ: \(\sigma = 4.9 \pm 1.4 \text{ pb} \)
 - 3.6 \(\sigma \), 0.9 fb\(^{-1}\)
 - PRL 98, 181802 (2007)
- CDF: \(\sigma = 2.2^{+0.7}_{-0.6} \text{ pb} \)
 - 3.7 \(\sigma \), 2.2 fb\(^{-1}\)
 - PRL 101, 252001 (2007)

FCNC Production, DØ & CDF
- Search for \(u(c) + g \to t \) processes
- CDF: \(\sigma < 1.8 \text{ pb} \) PRL 102, 151801 (2008)
 - \(\kappa_{tu}/\Lambda < 0.018 \text{ TeV}^{-1} \), \(\kappa_{tc}/\Lambda < 0.069 \text{ TeV}^{-1} \)

Anomalous Wtb Couplings, DØ

Resonance searches, DØ & CDF
Signal is modeled using SINGLETOP (DØ) and MADEVENT (CDF).

Most backgrounds modeled using ALPGEN, with PYTHIA parton hadronization. W+Heavy Flavor jets are underestimated, so are scaled up by a factor of ~1.4, which is obtained from data/MC comparisons.

QCD background is obtained from data, using orthogonal samples (non-isolated leptons for DØ, extrapolation from low missing transverse energy for CDF).

W+jets and QCD are normalized to data, all others to SM NNLO cross sections before b-tagging.
Event Selection

Lepton + jets selection
- 2 or 3 (or 4 for DØ) jets
- 1 or 2 jets b-tagged
- High p_T isolated e or μ
- Large missing transverse energy, E_T

Still big background problem
- S:B \sim1:20, Signal acceptance \sim3%
- Need multivariate analysis (MVA) techniques to discriminate

Event Yields

<table>
<thead>
<tr>
<th>Event</th>
<th>DØ 2.3 fb$^{-1}$</th>
<th>CDF 3.2 fb$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$tb + t\bar{q}b$ signal</td>
<td>223 ± 30</td>
<td>191 ± 28</td>
</tr>
<tr>
<td>W^+jets</td>
<td>2,647 ± 241</td>
<td>2,204 ± 542</td>
</tr>
<tr>
<td>Z^+jets, dibosons</td>
<td>340 ± 61</td>
<td>171 ± 15</td>
</tr>
<tr>
<td>$t\bar{t}$ pairs *1,*2,*3</td>
<td>1,142 ± 168</td>
<td>686 ± 99</td>
</tr>
<tr>
<td>Multijets</td>
<td>300 ± 52</td>
<td>125 ± 50</td>
</tr>
<tr>
<td>Total prediction</td>
<td>4,652 ± 352</td>
<td>3,377 ± 505</td>
</tr>
<tr>
<td>Data</td>
<td>4,519</td>
<td>3,315</td>
</tr>
</tbody>
</table>
Lepton + jets selection
- 2 or 3 (or 4 for DØ) jets
- 1 or 2 jets b-tagged
- High p_T isolated e or μ
- Large missing transverse energy, E_T

Still big background problem
- S:B ~1:20, Signal acceptance ~3%
- Need multivariate analysis (MVA) techniques to discriminate

Event Yields

<table>
<thead>
<tr>
<th>Event</th>
<th>DØ 2.3 fb$^{-1}$</th>
<th>CDF 3.2 fb$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t\bar{b}$ + $tq\bar{b}$ signal $*1,*2$</td>
<td>223 ± 30</td>
<td>191 ± 28</td>
</tr>
<tr>
<td>$W^+\text{jets}$</td>
<td>$2,647 \pm 241$</td>
<td>$2,204 \pm 542$</td>
</tr>
<tr>
<td>$Z^+\text{jets, dibosons}$</td>
<td>340 ± 61</td>
<td>171 ± 15</td>
</tr>
<tr>
<td>$t\bar{t}$ pairs $*1,*2,*3$</td>
<td>$1,142 \pm 168$</td>
<td>686 ± 99</td>
</tr>
<tr>
<td>Multijets</td>
<td>300 ± 52</td>
<td>125 ± 50</td>
</tr>
<tr>
<td>Total prediction</td>
<td>$4,652 \pm 352$</td>
<td>$3,377 \pm 505$</td>
</tr>
</tbody>
</table>

Data
- 4,519
- 3,315

DØ Single Top 2.3 fb$^{-1}$ Signals and Backgrounds

- 2 jets
- 3 jets
- 4 jets

ICHEP
July 22, 2010
Multivariate Methods

- Combine the modest discriminating power of many separate variables into one very effective discriminant.
- Data is separated into several individual analysis channels based on $N_{\text{jet}}, N_{b\text{-tag}}$, and lepton type (DØ only). MVAs are performed on each channel separately, then combined.

Likelihood Functions (CDF only)
- Combine 7-10 variables into a single likelihood function

$$L = \frac{\prod_{i=1}^{n_{\text{var}}} p_i^{\text{sig}}(x_i)}{\prod_{i=1}^{n_{\text{var}}} p_i^{\text{sig}}(x_i) + \prod_{i=1}^{n_{\text{var}}} p_i^{\text{bkg}}(x_i)}$$

Matrix Elements
- Using full event kinematics from reconstructed 4-momenta, calculate probability for S and B hypotheses
- Include all parton level matrix elements

B. Quinn
University of Mississippi

ICHEP
July 22, 2010
Boosted Decision Trees
- Sequence of binary split cuts for S/B separation
- Pass or fail, events continue to be analyzed, terminating in leaf nodes classified as S or B based on signal purity
- Boosting: performance and stability improved by averaging over many trees
- Many variables (DØ: 64, CDF: 20), adding more does not degrade performance

Neural Networks
- Combine variables using node-to-node weights and thresholds
- Fewer variables (DØ: 18-28, CDF: 11-18), adding too many degrades performance
- DØ: Bayesian NN – average over many NN, avoid overtraining
- CDF: NeuroBayes – incl. jet flavor separation

Event Yield

DØ 2.3 fb⁻¹

- Boosted Decision Trees Output
- Bayesian Neural Networks Output
Other Methods (CDF)

Separate s-channel search
- s-channel sensitive to W', H^+
- Likelihood function analysis optimized for s-channel only in lepton+jets
- Double b-tagged events only

- $\sigma_s < 3.49$ pb at 95% CL

CDF Conf. Note 9712

E_T + Jets
- Performed on a sample orthogonal to lepton+jets, with un-reconstructed leptons
- Recover hadronic taus from W decay
- Neural net based
- Combined with 3.2 fb^{-1} lepton+jets analyses

- PRD 81, 072003 (2010)

B. Quinn
University of Mississippi

ICHEP
July 22, 2010
Combining the separate MVAs into one, more powerful discriminant

- Individual analyses are ~60-90% correlated

DØ: Bayesian Neural Network
- Similar to individual BNN analysis, but with the three MVA results as inputs
- Cross-checked with BLUE (Best Linear Unbiased Estimator)

CDF: NeuroEvolution of Augmenting Topologies (NEAT)
- Competition of NNs that includes binning, systematics, etc. using 5 lepton+jets inputs
- Choose the NN that optimizes expected p-value
- Then do simultaneous fit with E_T^{jet}+jets

B. Quinn
University of Mississippi

ICHEP
July 22, 2010
Observation!

<table>
<thead>
<tr>
<th>Lumi (fb⁻¹)</th>
<th>Cross Section (pb)</th>
<th>Expected Significance</th>
<th>Observed Significance</th>
<th>Publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>DØ</td>
<td>2.3</td>
<td>3.94 ± 0.88</td>
<td>4.5σ</td>
<td>PRL 103, 092001 (2009)</td>
</tr>
<tr>
<td>CDF</td>
<td>3.2</td>
<td>2.3³±⁰.⁶⁻⁰.⁵</td>
<td>5.9σ</td>
<td>PRL 103, 092002 (2009)</td>
</tr>
</tbody>
</table>

B. Quinn
University of Mississippi
July 22, 2010
$|V_{tb}|^2 \propto \sigma(s+t)_{\text{meas}} / \sigma(s+t)_{\text{SM}}$

Need to make some assumptions:

- $|V_{td}|^2 + |V_{ts}|^2 \ll |V_{tb}|^2$
- Pure V-A, CP conserving interaction: $f_1^R = f_2^L = f_2^R = 0$
- Does not assume 3 generations or CKM unitarity

| $|V_{tb}|$ | Measurement | Lower Limit $(0 \leq |V_{tb}|^2 \leq 1)$ |
|---------|-------------|---------------------------------|
| DØ | 1.07±0.12 | 0.78 |
| CDF | 0.91±0.13 | 0.71 |
Bayesian analysis using discriminants from all 9 DØ and CDF MVA outputs.

Compatible with SM
- Compatible with each other at 1.6σ

arXiv: 0908.2171
SM single t production is almost pure V-A, i.e. 100% left-handed polarization
Non-SM production can introduce V+A, right-handed couplings
2D Likelihood analysis with separate LLLL (SM) and RRLL discriminants

CDF Conf. Note 9920

V-A Production
$\sigma_{LLLL} = 1.72$ pb

V+A Production
$\sigma_{RRLL} = 0$ pb

Polarization
$$\frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} = -1^{+1.5}_{-0}$$
First t-channel Evidence: DØ

- Sensitive to FCNC, anomalous couplings
- Train the MVAs to select t-channel events only
- Measure s- and t-channel cross sections simultaneously
 - s/t is not constrained to SM value

<table>
<thead>
<tr>
<th></th>
<th>σ(pb)</th>
<th>Exp. Sig.</th>
<th>Obs. Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>t-channel</td>
<td>3.1±0.9</td>
<td>3.7σ</td>
<td>4.8σ</td>
</tr>
<tr>
<td>s-channel</td>
<td>1.0±0.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PLB 690, 5 (2010)
Reconstruct hadronically decaying taus

- 1 and 3 prong, with and without π^0s
- Use Boosted Decision Trees for tau ID
- Use Boosted Decision Trees for signal discrimination

- 44-70 variables

Published 6/7/10!
Gluon mediated flavor-changing neutral currents can produce single t
- Negligible in SM, large in BSM (SUSY, composite,…)
- Topology similar to EW t-channel production
 - Same selection except require one and only one b-tag

BNN analysis
arXiv: 1006.3575
Submitted to PLB 6/18/10!

<table>
<thead>
<tr>
<th></th>
<th>σ_{tg} (pb)</th>
<th>κ_{tg}/Λ (TeV$^{-1}$)</th>
<th>$B(t\rightarrow qg)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>tgu</td>
<td>0.2</td>
<td>0.013</td>
<td>2.0×10^{-4}</td>
</tr>
<tr>
<td>tgc</td>
<td>0.27</td>
<td>0.057</td>
<td>3.9×10^{-3}</td>
</tr>
</tbody>
</table>

$$L_{FCNC} = \frac{\kappa_{tg}}{\Lambda} f_{g\sigma}^\mu\nu \frac{\lambda^a}{2} tG_{\mu\nu}^a,$$

DØ 2.3 fb$^{-1}$

ICHEP
July 22, 2010

B. Quinn
University of Mississippi
The study of single top quark physics at the Tevatron has been extremely rich and productive.

In the past year, we’ve published:
- Observation of single top production
- Evidence for t-channel production
- Top quark polarization
- New limits on FCNC
- New W' search (Scodellaro, 7/24 15:20)
- Top width measurement (Grohsjean, 7/23 11:25)

Established single t analysis methods now being used to search for Higgs, …

New analyses with more than twice the data very soon, 10 fb$^{-1}$ by next year, possibly running 3 more years!

B. Quinn
University of Mississippi
ICHEP
July 22, 2010