Single Top Quark Production at the Tevatron Breese Quinn University of Mississippi On behalf of the CDF and DØ Collaborations 35th International Conference on High Energy Physics Palais des Congrès, Paris July 22, 2010 # Single Top Production Top quarks are most commonly produced in pairs through the strong interaction. $$\bullet$$ $\sigma(t\bar{t}) = 7.46^{+0.48}_{-0.67} \text{ pb}$ @ $m_t = 172.5 \text{ GeV/c}^2$ Moch, Uwer: PRD 78, 034003 (2008) - ♦ EW processes can produce single top quarks in association with b quarks. - \bullet s-channel: $\sigma = 1.12 \pm 0.05$ pb - + t-channel: $σ = 2.34\pm0.13$ pb @ $m_t=170$ GeV/ c^2 , Kidonakis PRD **74**, 114012 (2006) - SM measurements - \bullet CKM: $|V_{tb}|$ - top width and polarization... - ♦ Width: Grohsjean, TRK02, 7/23 11:25 - New Physics - Anomalous couplings, FCNC - ♣ Anomalous couplings: Sharyy, TRK02, 7/23 9:20 - Resonance searches (W', H⁺) - ♦ W': Scodellaro, TRK10, 7/24 15:20 ## Why It's Been So Hard To Find - Single t production predicted 10 years before t discovered in pair production, but no evidence until 12 years after! - \blacksquare Half the cross section of $t\bar{t}$, but much more difficult background situation. - ♦ S:B after event selection 1:20 for Single t 5:1 for $t\bar{t}$ DØ Experiment Event Display Single Top Quark Candidate Event, 2.3 fb⁻¹ Analysis → Backgrounds:QCD W+jets, Z+jets, Diboson, t̄t ### The Data ### **2002-2005** - ♣ Lower instantaneous luminosities (typical peak ~1E32) - → ~1.5 fb⁻¹ integrated luminosity delivered ### **2006-2010** - Higher instantaneous luminosities (typical peak ~3E32) - Upgraded detectors - ◆ ~7.5 fb⁻¹ delivered - All results described in this talk have been published within the past year, and are based on 2.3-4.8 fb⁻¹ of 'good' data. ### Results Prior to 8/09 CDF Run II, $L = 2.2 \text{ fb}^{-1}$ #### **♦ Evidence, DØ & CDF** - DØ: $\sigma = 4.9 \pm 1.4 \text{ pb}$ - \bullet 3.6 σ , 0.9 fb ⁻¹ - **PRL 98**, 181802 (2007) - CDF: $\sigma = 2.2^{+0.7}_{-0.6} \text{ pb}$ - \bullet 3.7 σ , 2.2 fb⁻¹ - **PRL 101**, 252001 (2007) #### **♦ FCNC Production, DØ & CDF** - \bullet Search for $u(c) + g \rightarrow t$ processes - \bullet CDF: σ < 1.8 pb PRL **102**, 151801 (2008) - $\star \kappa_{tug}/\Lambda < 0.018 \text{ TeV}^{-1}, \ \kappa_{tcg}/\Lambda < 0.069 \text{ TeV}^{-1}$ - **♦** Anomalous Wtb Couplings, DØ - **♦** Resonance searches, DØ & CDF # Modeling and BG Normalization - ◆ Signal is modeled using SINGLETOP (DØ) and MADEVENT (CDF). - ↑ Most backgrounds modeled using ALPGEN, with PYTHIA parton hadronization. W+Heavy Flavor jets are underestimated, so are scaled up by a factor of ~1.4, which is obtained from data/MC comparisons. - ◆ QCD background is obtained from data, using orthogonal samples (non-isolated leptons for DØ, extrapolation from low missing transverse energy for CDF). ♦ W+jets and QCD are normalized to data, all others to SM NNLO cross sections before b-tagging. ### **Event Selection** - Lepton + jets selection - ◆ 2 or 3 (or 4 for DØ) jets - ♦ 1 or 2 jets *b*-tagged - \rightarrow High p_T isolated e or μ - \leftarrow Large missing transverse energy, \cancel{E}_T - ♦ S:B ~1:20, Signal acceptance ~3% - Need multivariate analysis (MVA) techniques to discriminate | Event | DØ 2.3 fb ⁻¹ | CDF 3.2 fb ⁻¹ | | | |---------------------------|--|---------------------------------|--|--| | Yields | Lepton+隼 ₇ +jets / <i>b</i> -tagged | | | | | tb + tqb signal *1,*2 | 223 ± 30 | 191 ± 28 | | | | W+jets | 2,647 ± 241 | 2,204 ± 542 | | | | Z+jets, dibosons | 340 ± 61 | 171 ± 15 | | | | <i>tt</i> pairs *1,*2, *3 | 1,142 ± 168 | 686 ± 99 | | | | Multijets | 300 ± 52 | 125 ± 50 | | | | Total prediction | 4,652 ± 352 | 3,377 ± 505 | | | | Data | 4,519 | 3,315 | | | ### Event Selection - Lepton + jets selection - ◆ 2 or 3 (or 4 for DØ) jets - ♦ 1 or 2 jets *b*-tagged - \rightarrow High p_T isolated e or μ - ightharpoonup Large missing transverse energy, $\not E_T$ - Still big background problem - ♦ S:B ~1:20, Signal acceptance ~3% - Need multivariate analysis (MVA) techniques to discriminate | Event
Yields | DØ 2.3 fb ⁻¹ | CDF 3.2 fb ⁻¹ | | | |---------------------------|--|---------------------------------|--|--| | | Lepton+ <i>⋢</i> ₇ +jets / <i>b</i> -tagged | | | | | tb + tqb signal *1,*2 | 223 ± 30 | 191 ± 28 | | | | W+jets | 2,647 ± 241 | 2,204 ± 542 | | | | Z+jets, dibosons | 340 ± 61 | 171 ± 15 | | | | <i>tt</i> pairs *1,*2, *3 | 1,142 ± 168 | 686 ± 99 | | | | Multijets | 300 ± 52 | 125 ± 50 | | | | Total prediction | 4,652 ± 352 | 3,377 ± 505 | | | | Data | 4,519 | 3,315 | | | tb tqb $t\bar{t} \rightarrow II$ $t\bar{t} \rightarrow I+jets$ Wbō Wcc Wcj Wjj Z+jets Dibosons Multijets ### Multivariate Methods - ← Combine the modest discriminating power of many separate variables into one very effective discriminant. - ightharpoonup Data is separated into several individual analysis channels based on N_{jet} , N_{b-tag} , and lepton type (DØ only). MVAs are performed on each channel separately, then combined. #### **Likelihood Functions (CDF only)** Combine 7-10 variables into a single likelihood function ### **Matrix Elements** ◆ Using full event kinematics from reconstructed 4-momenta, calculate probability for S and B hypotheses ### Multivariate Methods M,>162 $p_{x} < 27.6$ #### **Boosted Decision Trees** ★ Sequence of binary split cuts for S/B separation Pass or fail, events continue to be analyzed, terminating in leaf nodes classified as S or B based on signal purity ♣ Boosting: performance and stability improved by averaging over many trees ↑ Many variables (DØ: 64, CDF: 20), adding more does not degrade performance #### **Neural Networks** - Combine variables using node-to-node weights and thresholds - Fewer variables (DØ: 18-28, CDF: 11-18), adding too many degrades performance - DØ: Bayesian NN − average over many NN, avoid overtraining - ↑ CDF: NeuroBayes –incl. jet flavor separation 0.0035 0.003 0.0025 0.002 0.0015 0.001 0.0005 # Other Methods (CDF) #### **Separate s-channel search** - ♦ s-channel sensitive to W', H⁺ - Likelihood function analysis optimized for s-channel only in lepton+jets - \uparrow Double *b*-tagged events only σ_cSM=0.88 [pb] $\sigma_{s} < 3.49 \text{ pb}$ at 95% CL cDF Conf. Note 9712 #### $E_T + \mathbf{Jets}$ - Performed on a sample orthogonal to lepton+jets, with un-reconstructed leptons - Recover hadronic taus from W decay - Neural net based - ← Combined with 3.2 fb⁻¹ lepton+jets analyses - **PRD 81**, 072003 (2010) ### Combinations #### Combine the separate MVAs into one, more powerful discriminant ♣ Individual analyses are ~60-90% correlated #### DØ: Bayesian Neural Network - Similar to individual BNN analysis, but with the three MVA results as inputs - Cross-checked with BLUE (Best Linear Unbiased Estimator) # **CDF:** NeuroEvolution of Augmenting Topologies (NEAT) - ◆ Competition of NNs that includes binning, systematics, etc. using 5 lepton+jets inputs - ♦ Choose the NN that optimizes expected p-value - \uparrow Then do simultaneous fit with \mathbb{Z}_{T} +jets ### Observation! | | Lumi
(fb ⁻¹) | Cross Section (pb) | Expected Significance | Observed
Significance | Publication | |-----|-----------------------------|---------------------|-----------------------|--------------------------|------------------------| | DØ | 2.3 | 3.94±0.88 | 4.5σ | $\int 5.0\sigma$ | PRL 103, 092001 (2009) | | CDF | 3.2 | 2.3 ^{+0.6} | 5.9σ | $\int 5.0\sigma$ | PRL 103, 092002 (2009) | # V_{th} Extraction $$\Gamma_{Wtb}^{\mu} = -\frac{g}{\sqrt{2}} \underbrace{V_{tb}} \left\{ \gamma^{\mu} \left[f_{1}^{L} P_{L} + f_{1}^{R} P_{R} \right] - \frac{i \sigma^{\mu \nu}}{M_{W}} \left(p_{t} - p_{b} \right)_{\nu} \left[f_{2}^{L} P_{L} + f_{2}^{R} P_{R} \right] \right\}$$ - + $|V_{tb}|^2 \alpha \sigma(s+t)_{meas} / \sigma(s+t)_{SM}$ - Need to make some assumptions: $$\left| V_{td} \right|^2 + \left| V_{ts} \right|^2 << \left| V_{tb} \right|^2$$ - Pure V-A, CP conserving interaction: $f_1^R = f_2^L = f_2^R = 0$ - Does not assume 3 generations or CKM unitarity | $ \mathbf{V}_{\mathrm{tb}} $ | Measurement | Lower Limit $(0 \le V_{tb} ^2 \le 1)$ | | |------------------------------|-------------|--|--| | DØ | 1.07±0.12 | 0.78 | | | CDF | 0.91±0.13 | 0.71 | | ### Tevatron Combination - Bayesian analysis using discriminants from all 9 DØ and CDF MVA outputs. - Compatible with SM - \bullet Compatible with each other at 1.6 σ arXiv: 0908.2171 # Top Quark Polarization: CDF - → SM single t production is almost pure V-A, i.e. 100% left-handed polarization - ◆ Non-SM production can introduce V+A, right-handed couplings - → 2D Likelihood analysis with separate LLLL (SM) and RRLL discriminants CDF Conf. Note 9920 ### First t-channel Evidence: DØ - Sensitive to FCNC, anomalous couplings - Train the MVAs to select t-channel events only - Measure s- and t-channel cross sections simultaneously - ♦ s/t is not constrained to SM value | | $\sigma(\mathrm{pb})$ | Exp. Sig. | Obs. Sig. | |-----------|-----------------------|-------------|-------------| | t-channel | 3.1±0.9 | 3.7σ | 4.8σ | | s-channel | 1.0±0.8 | | | #### PLB **690**, 5 (2010) # τ +jets: DØ - Reconstruct hadronically decaying taus - \uparrow 1 and 3 prong, with and without π^0 s - Use Boosted Decision Trees for tau ID - Use Boosted Decision Trees for signal discrimination - ♦ 44-70 variables PLB **690**, 5 (2010) Published 6/7/10! # Gluon FCNC Production: DØ - Gluon mediated flavor-changing neutral currents can produce single t - Negligible in SM, large in BSM (SUSY, composite,...) - Topology similar to EW t-channel production # Summary - **♦** The study of single top quark physics at the Tevatron has been extremely rich and productive. - **♦** In the past year, we've published - Observation of single top production - ♣ Evidence for t-channel production - → Top quark polarization - **♦** New limits on FCNC - New W' search (Scodellaro, 7/24 15:20) - → Top width measurement (Grohsjean, 7/23 11:25) - **Established single** *t* analysis methods now being used to search for Higgs, ... - **♦** New analyses with more than twice the data *very* soon, 10 fb⁻¹ by next year, possibly running 3 more years!