Alignment of the ATLAS Inner Detector Tracking System

Jike Wang (Academia Sinica) on behalf of the ATLAS collaboration

Introduction

The ATLAS Inner Detector (ID) consists of two silicon subsystems, the Pixel detector and the Semiconductor Tracker (SCT), complemented by the Transition Radiation Tracker (TRT) composed of drift tubes.

	Number of Modules	Technology	Intrinsic Resolution
Pixel	1774	silicon pixel	$10 \mu \mathrm{~m}(\mathrm{r} \phi), 115 \mu \mathrm{~m}(\mathrm{rz})$
CT	4088	silicon micro-strips	$17 \mu \mathrm{~m}(\mathrm{r} \phi), 580 \mu \mathrm{~m}(\mathrm{rz})$
CRT	176	drift tubes	$130 \mu \mathrm{~m}(\mathrm{r} \phi)$

After the assembly of the detector, the position of the individual modules is known with much worse accuracy than their intrinsic resolution. Therefore a track-based alignment procedure has to be applied.

The baseline goal of the alignment is to determine the position and orientation of the modules with such precision that the track parameters' determination is not worsened by more than 20% with respect to that expected from the perfectly aligned detector. This is crucial for efficient track reconstruction and precise momentum measurement and vertex reconstruction.

Alignment Levels

Neglecting the module deformations, for each module 6 alignment degrees-of-freedom (OoF) can be defined: 3 translations of the center of the module ($\mathrm{Tx}, \mathrm{Ty}, \mathrm{Tz}$) and 3 rotations around the Cartesian axes ($\mathrm{Rx}, \mathrm{Ry}, \mathrm{Rz}$). In order to address the realistic misalignments of the detector, the alignment is done at different levels of granularity motivated by the mechanical structure of the ID.

For Silicon level 3 alignment, in total about 36,000 DoEs to be aligned

Residual χ^{2} Minimization

The tala χ^{2} to be minimimized: parameters a and the track parameters τ. V is the covariance matrix The minimization of χ^{2} requires:
\qquad

Computing Challenges

1. Data are processed in parallel on multiple CPUs, then merged to obtain the final matrix A and vector B. An infrastructure to submit parallel jobs to the Grid has been put in place too.
2. Depending on the granularity of the alignment, different matrix solving techniques are used, such as Lapack, ScaLapack, MA27 etc. The number of matrix DoE in equation (3) can reach 36,000 and can be far from sparse, then solving is very computationally intensive. New techniques (such as GPUs) are under investigation.

Beam-spot and Vertex Constraints

- Beam-spot and vertex constraints are essential for high quality alignment. The corresponding tools have been implemented.
- The basic idea consists of adding either beam-spot or vertex information to the collection of track measurements. A subsequent track refit provides updated measurement residuals and corresponding derivatives.

Alignment Performance with 7TeV Collision Data

Residuals: The 6 plots below are results for 7 TeV data with Post-Collisions Alignment (using 2009 cosmics +900 GeV data), Pre-Collisions Alignment (using 2008 cosmics) and for Conto Carlo with perfect geometry. One can see that in general the width of the residual distributions are reduced using Post-Collisions Alignment compared with Pre-Collisions Alignment, indicating a significant improvement in the ID alignment after collision tracks have been used.

Alignment Strategy

Track-Based Alignment Algorithms

re independent algorithms have been developed and validated in the ATLAS offline software framework. All are based on the residuals of the reconstructed hits on racks.

- Global X^{2} : It is the baseline alignment algorithm, which simultaneously fits all particle track parameters and alignment parameters by minimizing a large X^{2}. It requires solving linear systems of the size equal to the number of the alignment DoEs. At level 3, this number becomes very large.
- Local X^{2} : Solve a linearized equation for each detector module separately; only requires the inversion of a 6×6 matrix per alignable structure.
- Robust Alignment: Uses weighted mean residual and overlap residual distributions and centers them.

The middle module is shifted away from its nominal position. Real positions (green filled) are not known, thus the reconstruction uses the nominal position (red dashed). Consequently track fit quality is degraded. The residual distribution of the displaced module (and the others) will be biased away from 0 . This bias measures the shift of the module and is the basis for the alignment.

Weak Modes

Some global distortions preserve the helical trajectory of tracks and consequently track-based alignment algorithms are insensitive to them. These are called "weak modes" of alignment.
Table shows simplest examples of weak modes and their impact on physics measurements.

Methods to Deal with Weak Modes:

- Different track topologies, such as cosmics, beam-gas, beam-halo etc.
- Use constraints, such as beam-spot, vertex constraint, constraint on invariant masses of well known resonant decays, constraint on momentum from other systems etc.

Transverse Impact Parameter: Shown is the mean transverse impact parameter, relative to the determined beam-spot position, as a function of track azimuthal angle, φ, (left) and track pseudo-rapidity, η, (right). The Post-Collisions Alignment shows considerable improvement compared to the Pre-Collisions Alignment.

Alignment Stability over Time: Figures are the Pixel alignment stability as a function of time. Shown is the mean (left) and the FWHM/2.35 (right) of the barrel, endcap A and endcap C residuals. The results indicate there are no significant changes in the module positions/orientations over the time

