

S-Waves & the measurement of β_s in \mathcal{B}_s decays

Sheldon Stone ICHEP, Paris, July 2010

Mystery of Scalar Mesons

0⁺ nonet is not well understood

Compare 0⁻ versus 0⁺

Quarks	Pseudoscalar		Scalar	
	Particle	Mass (MeV)	Particle	Mass (MeV)
1/√2(uū+dⴋ)	π ^o	135	σ?	~600
uđ	π^+	139	a _o +	980
us	K+	495	к ⁺ ?	~900
~s§	η′	960	f _o	980

For 0- nonet, the mass increases by ~400 MeV for each s quark. Why isn't this true for the 0+ nonet?

- \square Why aren't the a_o & the σ degenerate in mass?
- Suggestions that the 0⁺ are 4-quark states

S-waves in $\mathcal{D}_{s} \rightarrow \mathcal{K}^{+}\mathcal{K}^{-}\pi^{+}$ decays

Dalitz analyses (also E687)

Fit using a linear S-wave + Breit-Wigner convoluted with Gaussian for the φ. Find
 6.3% (8.9%) S-wave for ±10 MeV (±15 MeV)

ICHEP, París, July 24, 2010

S-waves vía Interference in semileptonic decays

- D⁺→K⁻π⁺μ⁺ν: Though Kπ is dominantly K*, FOCUS observed an interfering S-wave amplitude with a rate fraction of (2.7±0.4)% for 0.8 < m(Kπ) < 1.0 GeV
- $D_s \rightarrow K^+ K^- e^+ v$: S-wave fraction of $(0.22^{+0.12}_{-0.08})$ % for $1.01 < m(K^+ K^-) < 1.3$ GeV (BaBar)

ICHEP, Paris, July 24, 2010

The S-Wave in $\mathcal{B} \rightarrow J/\psi \mathcal{K}^*$

- Two Vectors in final states so a transversity analysis is required
- BaBar & Belle measure interference between S & P waves in K* decay angle
- The fraction of S-wave intensity is (7.3±1.8)% for 0.8 < m(Kπ) <1.0 GeV
- BaBar uses this interference to remove ambiguities in the measurement of cos(2β)
 ICHEP, París, July 24, 2010

Measuring β_s in \mathcal{B}_s Decays

- Thus far $B_s \rightarrow J/\psi \phi$ used exclusively
- $B_s \rightarrow \phi \phi$ suggested, for null measurement, as decay phase cancels mixing phase These modes are Vector-Vector final state, so must disentangle CP+ & CP- final states using an angular analysis

Technique

• Without S-waves & $\Delta\Gamma=0$ $A(B_s \to J/\psi\phi) = A_0(m_\phi)/E_\phi \epsilon_{J/\psi}^{*L} - A_{\parallel} \epsilon_{J/\psi}^{*T}/\sqrt{2} - iA_{\perp} \epsilon_{\phi}^* \cdot \hat{\mathbf{p}}/\sqrt{2},$ • $A_0 P = +$ longitudinal, $A_{\parallel} P = +$ trans, $A_{\perp} P = -$ trans $\frac{d^4\Gamma[B_s \to (\ell^+\ell^-)_{J/\psi}(K^+K^-)_{\phi}]}{d\cos\theta \ d\phi \ d\cos\psi \ dt} = \frac{9}{32\pi} [2|A_0|^2 \cos^2\psi (1-\sin^2\theta \cos^2\phi)$ $+\sin^{2}\psi\{|A_{\parallel}|^{2}(1-\sin^{2}\theta\sin^{2}\phi)+|A_{\perp}|^{2}\sin^{2}\theta-\mathrm{Im}(A_{\parallel}^{*}A_{\perp})\sin2\theta\sin\phi\}$ $+\frac{1}{\sqrt{2}}\sin 2\psi \{\operatorname{Re}(A_0^*A_{\parallel})\sin^2\theta\sin 2\phi + \operatorname{Im}(A_0^*A_{\perp})\sin 2\theta\cos\phi\}] \quad .$

• For \overline{B}_s replace A_{\perp} by $-A_{\perp}$.

S-Wave term cannot be ignored (Stone & Zhang [arXiv:0812.2832])

Must add in S-wave amplitude and finite ΔΓ. *ICHEP*, *Paris*, July 24, 2010

All terms [Xíe et al, arXív:098.3627]

Time dependence (for ex.)

$$|A_0(t)|^2 = |A_0|^2 e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma_s t}{2}\right) - \cos\Phi\sinh\left(\frac{\Delta\Gamma_s t}{2}\right) + \sin\Phi\sin(\Delta m_s t) \right]$$

Can write
$$\frac{\mathrm{d}^4\Gamma(\mathrm{B}^0_{\mathrm{s}}\to\mathrm{J}/\psi\mathrm{K}^+\mathrm{K}^-)}{\mathrm{d}t\,\mathrm{d}\cos\theta\,\mathrm{d}\cos\psi\,\mathrm{d}\varphi}\propto\sum_{k=1}^{10}h_k(t)f_k(\Omega)$$

k	$h_k(t)$	$\bar{h_k}(t)$	$f_k(heta_l, heta_K,arphi)$
1	$ A_0(t) ^2$	$ \bar{A}_0(t) ^2$	$4\sin^2\theta_l\cos^2\theta_K$
2	$ A_{ }(t) ^2$	$ \bar{A}_{ }(t) ^2$	$(1 + \cos^2 \theta_l) \sin^2 \theta_K - \sin^2 \theta_l \sin^2 \theta_K \cos 2\varphi$
3	$ A_{\perp}(t) ^2$	$ \bar{A}_{\perp}(t) ^2$	$(1 + \cos^2 \theta_l) \sin^2 \theta_K + \sin^2 \theta_l \sin^2 \theta_K \cos 2\varphi$
4	$\Im\{A_{ }^*(t)A_{\perp}(t)\}$	$\Im\{\bar{A}^*_{ }(t)\bar{A}_{\perp}(t)\}$	$2\sin^2\theta_l\sin^2\theta_K\sin 2\varphi$
5	$\Re\{A_0^*(t)A_{ }(t)\}$	$\Re\{\bar{A}_0^*(t)\bar{A}_{ }(t)\}$	$-\sqrt{2}\sin 2\theta_l\sin 2\theta_K\cos \varphi$
6	$\Im\{A_0^*(t)A_{\perp}(t)\}$	$\Im\{\bar{A}_0^*(t)\bar{A}_\perp(t)\}$	$\sqrt{2}\sin 2\theta_l \sin 2\theta_K \sin \varphi$
7	$ A_S(t) ^2$	$ \bar{A}_S(t) ^2$	$\frac{4}{3}\sin^2 heta_l$
8	$\Re\{A_S^*(t)A_{ }(t)\}$	$\Re\{\bar{A}_S^*(t)\bar{A}_{ }(t)\}$	$-\frac{2}{3}\sqrt{6}\sin 2\theta_l\sin\theta_K\cos\varphi$
9	$\Im\{A_S^*(t)A_\perp(t)\}$	$\Im\{\bar{A}_{S}^{*}(t)\bar{A}_{\perp}(t)\}$	$\frac{2}{3}\sqrt{6}\sin 2 heta_l\sin heta_K\sin \varphi$
10	$\Re\{\overline{A_S^*(t)A_0(t)}\}$	$\Re\{\bar{A}_S^*(t)\bar{A}_0(t)\}$	$\frac{8}{3}\sqrt{3}\sin^2\theta_l\cos\theta_K$

Effects of S-wave

Adding A_S can only increase the experimental error. The size of the effect depends on many factors including the magnitude & phase of the S-wave amplitude, β_s, values of the strong phases, detector acceptances, biases..

Congratulations to CDF

- CDF added S-wave into β_s fit
 They find that the fitted fraction of K⁺K⁻ S-wave in the signal region is <6.7% at 95% c.l.
- See Louise Oakes, talk at FPCP, Torino, May 2010.

Estímates of J/ $\psi f_o(980)$

- Can use S-wave materializing as f_o(980) for CP measurements (Stone & Zhang [arXiv:0812.2832])
- The final state $J/\psi f_o$ is a CP+ eigenstate
- No angular analysis is necessary! This is just like measuring J/ψ K_s. The modes J/ψη & J/ψ η' can also be used, but they involved γ's in the decay & thus have lower efficiency at hadron colliders

• Define:

$$R_{f/\varphi} = \frac{\Gamma(B_s \to J/\psi f_0; f_0 \to \pi^+ \pi^-)}{\Gamma(B_s \to J/\psi \phi; \phi \to K^+ K^-)}$$

Theory Estímates of $\mathcal{R}_{fo/\phi}$

- Colangelo, De Fazio & Wang [arXiv:1002.2880]
- Use Light Cone Sum Rules at leading order
- Prediction 1: Using measured $\mathcal{C}(J/\psi \phi) = (1.3 \pm 0.4) \times 10^{-3}$
 - □ $\mathcal{B}(J/\psi f_o)$ =(3.1±2.4)x10⁻⁴ (0th order), R=24%
 - □ $\mathcal{C}(J/\psi f_o)$ =(5.3±3.9)x10⁻⁴ (leading order), R=41%
- Prediction 2: Using ff for ϕ from Ball & Zwicky [arXiv:hep-ph/0412079] $R_L = \frac{B(B_s \rightarrow J / \psi f_0)}{B(B_s \rightarrow J / \psi \phi_L)}$ $R_L = 0.13 \pm 0.06 \text{ (0th order),}$
 - =0.22±0.10 1st order

ICHEP, París, July 24, 2010

QCD Factorization

- O. Leitner etal [arXiv:1003.5980]
 Assume f_{Bs} = 260 MeV, f_{fo} = 380 MeV
- Predict $\mathscr{C}(B_s \rightarrow J/\psi f_o) = 1.70 \times 10^{-4}$.

$$\mathscr{B}(B_s \rightarrow J/\psi \phi) = 9.30 \times 10^{-4}.$$

- $R_{fo/\phi} = 0.187$. They show small variation with $B_s \rightarrow f_o$ form factor; "annihilation" effects important and decrease f_o rate.
- "S-wave kaons or pions under the φ peak in J/ψφ are very likely to originate from the similar decay J/ψf_o. Therefore, the extraction of the mixing phase from J/ψφ may well be biased by this S-wave effect which should be taken into account in experimental analysis"

ICHEP, París, July 24, 2010

Measurement will constrain theories

ICHEP, París, July 24, 2010

BELLE Results

Conclusions

- S-waves are ubiquitous, they appear whenever looked for, & must be taken into account in B_s→J/ψ φ measurements of amplitudes, phases, & CP violation
- In addition: add S-wave amplitudes in the analysis of $B \rightarrow K^* \mu^+ \mu^- \&$ surely in $B_s \rightarrow \phi \phi$
- B_s→J/ψ f_o may be a useful mode to add to the statistical precision on the measurement of -2β_s, & hopefully will provide useful checks since angular measurements are not necessary

Check on Prediction

Note that Colangelo et al predict

•
$$\mathscr{B}(\mathsf{D}_{\mathsf{s}} \to \mathsf{f}_{\mathsf{o}}\mathsf{e}^+\mathsf{v}) = (2.0^{+0.5}_{-0.4}) x 10^{-3},$$

- While CLEO measures
- $\mathcal{C}(D_s \to f_o e^+ v) = (4.0 \pm 0.6 \pm 0.6) \times 10^{-3},$
- Which implies that the calculated form-factor is low by a factor of 2, thus compensating for $\Gamma \phi_L / \Gamma_{total} = 0.53$

Results of ignoring S-wave

- □ Find bias of -10%
- \Box Error increases by ~15%.
- Can also use to eliminate δ_s ambiguity

Estimate of S-wave Effect

- Adding A_S can only increase the experimental error. The size of the effect depends on many factors including the magnitude & phase of the S-wave amplitude, β_s, values of the strong phases, detector acceptances, biases..
- One simulation for LHCb by Xie et al
 - Assumes either 5% or 10% S-wave with phases either 0 or 90°.
 - Simulates many Pseudo experiments

Estímate Usíng Hadroníc D_s Decays

M(B_s)-M(J/ψ)=5366- 3097 = 2270 MeV
 M(D_s)-M(π) = 1830 MeV, not too different

■ Use CLEO result for $D_s \rightarrow K^+K^-\pi^+$ extrapolated to zero ϕ width to extract $\mathscr{C}(D_s \rightarrow \phi \pi^+, \phi \rightarrow K^+K^-)$ = (1.6±0.1)%

Estimate from $D_{s} \rightarrow h^{+}h^{-}\pi^{+}$

- CLEO: $\mathscr{C}(D_s \rightarrow \pi^+ \pi^+ \pi^-) = (1.11 \pm 0.07 \pm 0.04)\%$
- Use BaBar Dalitz analysis to estimate fraction of f_oπ⁺ [arXiv:0808.0971]

Estimate (27±2)% of final state is in narrow f_o peak

$$R'_{f/\varphi} = \frac{\Gamma(D_s \to f_0 \pi^+; f_0 \to \pi^+ \pi^-)}{\Gamma(D_s \to \phi \pi^+; \phi \to K^+ K^-)} = (19 \pm 2)\%$$
 There is
more S-wave under f_o peak

$$\beta_s$$
 Sensítívíty Usíng $J/\psi f_o$

From Stone & Zhang [arXiv:0909.5442] for LHCb

Assume
$$R_{fo/\phi} = 25\%$$

Assume 2 fb⁻¹ at 14 TeV (~4 fb⁻¹ at 7 TeV)

- \Box J/ ψ ϕ : ±0.03 rad (not including S-wave)
- □ J/ ψ f_o, f_o→ $\pi^+\pi^-$: ±0.05 rad
- $\ \ \, \square \ \, J/\psi \ f_{o} + J/\psi \ \eta', \ \eta' {\rightarrow} \ \pi^{+}\pi^{-}\gamma: \pm 0.044 \ rad$
- The f_o mode should be useful

 $\mathcal{B}_{s} \rightarrow J/\psi f_{o}$ Signal Selection

ICHEP, París, July 24, 2010

Estimate from $\mathcal{D}_s \rightarrow (\phi/f_o) e^+ v$

ICHEP, París, July 24, 2010

Semíleptoníc estímate

• At q²=0, where phase space is closest to $B_s \rightarrow J/\psi(\phi/f_o)$

 $R_{f/\phi} \equiv \frac{\frac{d\Gamma}{dq^2} (D_s^+ \to f_0(980)e^+\nu, \ f_0 \to \pi^+\pi^-) \ |_{q^2=0}}{\frac{d\Gamma}{dq^2} (D_s^+ \to \phi e^+\nu, \ \phi \to K^+K^-) \ |_{q^2=0}} = (42 \pm 11)\%$

- Note that at q²=0 and in the case of D_s→φπ, the φ is forced into a longitudinal polarization state
- CDF measures only 53% φ_L, so these rates may be too large by x2