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Abstract

The Coulomb corrections to the cross section of e+e− pair
production in ultrarelativistic nuclear collisions are calcu-
lated in the next-to-leading approximation with respect to
the parameter L = ln γAγB (γA,B are the Lorentz factors
of colliding nuclei). We found considerable reduction of the
Coulomb corrections even for large γAγB due to the sup-
pression of the production of e+e− pair with the total energy
of the order of a few electron masses in the rest frame of
one of the nuclei. Our result explains why the deviation from
the Born result were not observed in the experiment at SPS.

1. Introduction

Electron-positron pair production in ultrarelativistic nuclear
collisions is investigated intensively during almost two last
decades. This process is important in the problem of beam
lifetime and luminocity of hadron colliders. It is also a seri-
ous background for many experiments because of its large
cross section. For heavy nuclei, the effect of higher-
order terms (Coulomb corrections) of the perturbation
theory with respect to the parameters ZAα and ZBα
can be very important (ZA and ZB are the charge num-
bers of the nuclei A and B). However, no evidence of the
Coulomb corrections has been found in the SPS exper-
iments [1, 2]. In the set of theoretical works [3, 4, 5] a
light-front approach has been elaborated which seemingly
resulted in vanishing of the Coulomb corrections in the ul-
trarelativistic limit. This statement was considered as an
explanation of the experimental results. However, it contra-
dicted to the result obtained in Ref. [6] with the help of the
Weizsäcker-Williams approximation in the leading logarith-
mic approximation. This contradiction has been resolved
in Ref. [7]. Consistent approach of Ref. [7] results in the
Coulomb corrections which coincide with those from Ref.
[6].
The absence of the Coulomb corrections in the experi-
ments [1, 2] has remained unexplained.

2. External field approximation

Since the nuclear mass
is large compared to the
electron mass, it is pos-
sible to treat the nuclei
as sources of the exter-
nal field and calculate the
probability Pn(b) of n-pair
production at a fixed im-
pact parameter b between
the nuclei.
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It is convenient to introduce the average number W (b) of
produced pairs and the number-weighted cross section σT
as

W (b) =

∞∑
n=1

nPn(b) , σT =

∫
d2bW (b) =

∞∑
n=1

nσn , (1)

where σn =
∫
d2bPn(b) is the cross section of n-pair produc-

tion. The cross section σT can be presented in the form:

σT = σ0 + σA + σB + σAB , (2)

where σ0 ∝ (ZAα)2(ZBα)2 is the Born cross section, σA and
σB are the Coulomb corrections with respect to nucleus A
and B, respectively, and σAB is the Coulomb corrections
with respect to both nuclei.
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The cross section σ0 is well-known (Landau,1934;Racah,1937):

σ0 =
28(ZAα)2(ZBα)2

27πm2

[
L3 − 2.2L2 + 3.8L− 1.6

]
, (3)

In the leading logarithmic approximation, the quantities
σA,B ∝ L2 and σAB ∝ L were obtained in Refs. [6, 7]
and in Ref. [8],respectively:

σ
A,B
LO =− 28(ZAα)2(ZBα)2

9πm2
f (ZA,Bα)L2 (4)

σABLO =
56(ZAα)2(ZBα)2

9πm2
f (ZAα)f (ZBα)L . (5)

3. Unitarity corrections

Unitarity correction σunit is the difference between the cross
section σ1 of one pair production and the number-weighted
cross section σT :

σ1 = σT + σunit ,

In the leading logarithmic approximation Pn(ρ) is subject to

Poisson distribution and

σunit = −
∫
d2 bW (b)

(
1− e−W (b)

)
. (6)

The unitarity correction has been numerically evaluated in
Ref. [9]. It is rather small and negative, therefore can not
explain the experimental Z2 scaling of the cross section.

4. Next-to-leading contribution to σA

Note that σA, being proportional to (ZBα)2, can be directly
calculated as the Coulomb corrections to σ1 with respect to
the parameter ZAα, so that it can be represented as

σA =

∫ [
dn⊥(ω,Q2)σ⊥(ω,Q2) + dn‖(ω,Q

2)σ‖(ω,Q
2)
]

(7)

Here dn⊥(ω,Q2) and
dn‖(ω,Q2) are the num-
bers of virtual pho-
tons γ∗⊥,‖ with the en-
ergy ω and the virtuality
−Q2 < 0. The quantities
σ⊥(ω,Q2) and σ‖(ω,Q2)

are the Coulomb correc-
tions to the cross sections
of the processes γ∗⊥,‖A→
e+e−A.

Figure 1: Regions of inte-
gration

The leading logarithmic contribution ∝ L2 comes from the
region I, and the correction ∝ L comes from regions II,III,IV
(see Fig.1).

5. Asymptotic region (I+II+III)

Since ω � m in regions I-III, we can use quasiclassical ap-
proximation to calculate the contribution of these regions
and replace

σ⊥,‖(ω,Q
2)→ σ⊥,‖(∞, Q2) (8)

If we adopt this replacement also in region IV, we obtain
[10, 11].

σAas = −28(ZBα)2(ZAα)2

9πm2
f (ZAα)

[
L2 +

20

21
L

]
. (9)

The coefficient in front of L1 is of the order of unity and pos-
itive!
If this was the final result, the Coulomb corrections
should have been observed in the experiment.

6. Near-threshold region (IV)

Let us represent
σA = σAas + δσA. (10)

Note that δσA comes entirely from region IV (with logarith-
mic precision). Therefore, we can neglect the virtuality Q2

of the photon and obtain

δσA = −28(ZBα)2(ZAα)2G(ZAα)

9πm2
f (ZAα)L ,

G(ZAα) = 2

∫ ∞
2m

dω

ω

[
σ⊥ (ω, 0)

σ⊥ (∞, 0)
− 1

]
. (11)

The quantity σ⊥(ω, 0) ≡ σγA(ω) is the Coulomb cor-
rections to the cross section of e+e− pair production
by real photon in the Coulomb field, and σ⊥ (∞, 0) =
−28α(ZAα)2/9m2. Taking the sum of Eqs. (9) and (11),
we finally obtain σA in the next-to-leading approximation

σA = −28(ZBα)2(ZAα)2

9πm2
f (ZAα)

[
L2 +

(
G(ZAα) +

20

21

)
L

]
.(12)

The function G(Zα) is
shown in Fig. 2. It is seen
that G(Zα) varies varies
slowly from −6.6 for Z = 1
to −6.14 for Z = 100. The
large value of G leads to
a big difference between
σA from Eq. (12) and
its leading logarithmic ap-
proximation (4).

Figure 2: G(Zα) vs Z.

7. Results

The contribution δσA, corresponding to G(ZAα) in Eq.
(12) is very important. If one omits this contribution
and use σAas, Eq. (9), as an approximation to σA,
then the contribution of linear in L term becomes much
less important, see the dashed curve in Fig. 3.
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Figure 3: The ratio σA/σALO (solid curve) as a function of
γ for ZA = 82. Here σALO, Eq. (4) is the Coulomb correc-
tions calculated in the leading logarithmic approximation.
Dashed curve shows the ratio σAas/σ

A
LO.

Note that for Pb-Pb collisions at LHC one has γ ≈ 1.8× 107

and σA/σALO ≈ 0.66. ForAu-Au collisions at RHIC one has
γ ≈ 2.3 × 104 and σA/σALO ≈ 0.42. For the experiments at
SPS [1, 2], the Lorentz factor was γ ≈ 200. Naturally, we can
not use the result (12) obtained in the logarithmic approxi-
mation in the region γ . 500 where the logarithmic correc-
tion to σA becomes larger than the leading term σALO. How-
ever, we can claim that, due to the strong compensation
between the leading term and the correction, the Coulomb
corrections σA are much smaller than σALO at γ . 500.
Therefore, this naturally explains why there was no evi-
dence of the Coulomb corrections in the experiments [1, 2].
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Figure 4: The ratio σA/σ0 (solid curve) as a function of γ
for ZA = 82. Dashed curve shows the ratio σALO/σ

0.

8. Conclusion

We have calculated the Coulomb corrections σA to e+e−
pair production in the next-to-leading logarithmic approxi-
mation. After the account of the next-to-leading term, the
magnitude of σA becomes small in comparison with the
Born cross section, in contrast to the leading term σALO. The
big difference between our result and previously suggested
one is due to strong suppression of the exact Coulomb cor-
rections are in a rather wide region 2m < ω . 20m near
threshold. Our results, combined with σAB, Ref. [8], com-
plete the calculation of linear in L terms in the number-
weighted cross section σT .
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