Beyond Standard Model
Higgs Searches at the Tevatron

presented by
Abid Patwa
Brookhaven National Laboratory, USA
on behalf of the CDF and DØ Collaborations

35th International Conference on High Energy Physics
July 22 – 28, 2010 ICHEP ‘10
Paris, France
Several extensions to SM predict additional Higgs bosons
 - behave similar to SM Higgs, but exhibit different couplings
 - branching ratio of various Higgs decays can be enhanced significantly

I. MSSM Higgs Search
 - 5 physical Higgs bosons
 * $\phi (= h^0, H^0, A^0)$ and H^\pm
 - main searches
 * $\phi b \rightarrow b\bar{b}b$
 * $\phi \rightarrow \tau\tau$ and $\phi b \rightarrow \tau\tau b$
 * charged Higgs in top decays

II. next-to-MSSM Higgs (NMSSM)
 - neutral CP-even Higgs boson ($h_{1,2,3}$)
 - neutral CP-odd Higgs boson ($a_{1,2}$)
 - charged Higgs pair (h^\pm)

III. Fermiophobic Higgs Search
 - not covered here... see talk by K. Peters, this conference
MSSM Higgs requires 2 doublets
- yields: $\phi (= h^0, H^0, A^0)$ and H^\pm

At tree-level, MSSM Higgs fully specified by two free parameters
- m_A
- $\tan \beta = \frac{\langle H_u \rangle}{\langle H_d \rangle}$
 (ratio of v.e.v. of 2 Higgs doublets)

Radiative corrections introduce dependence on additional SUSY parameters

Inclusive production cross section $\sigma (p\bar{p} \rightarrow h/H/A)$ is enhanced
- enhancement depends on $\tan \beta$

ϕ decays, in most parameter space:
- $\phi \rightarrow b\bar{b}$ ($\sim 90\%$)
- $\phi \rightarrow \tau\tau$ ($\sim 10\%$)
 * smaller BR but cleaner signature
 (vs. large QCD background in b mode)
CDF considers $\tau_\mu \tau_{\text{had}}$, $\tau_e \tau_{\text{had}}$, and $\tau_e \tau_\mu$ channels with 1.8 fb$^{-1}$ data, selected by:
- isolated e or μ: opposite-sign (OS) from hadronic τ
- τ's selected using variable-size cone algorithm
- Suppress W+jets background by requirement on relative direction of visible τ decay products and E_T

CDF: $\phi \rightarrow \tau\tau$ Search

- Data agrees with backgrounds for visible mass
 - set $\sigma \times \text{BR}$ limits for $90 \text{ GeV} < m_A < 250 \text{ GeV}$

CDF: PRL 103, 201801 (2009)
DØ: Inclusive $\tau\tau$ Search

- Result using 1.0 fb$^{-1}$ dataset for $\tau_\mu\tau_{\text{had}}$, $\tau_e\tau_{\text{had}}$, and $\tau_\mu\tau_\mu$: PRL 101, 071804 (2008)

- 2.2 fb$^{-1}$ of Run II data considers $\tau_\mu\tau_{\text{had}}$
 - isolated μ separated from τ: opposite-sign
 - hadronic τ categorized by decay types
 * discriminated from jets using τ-ID NN
 - $M_\tau < 40$ GeV \Rightarrow reject W+jets

- No excess in data across visible mass spectrum
 - upper limits on $\sigma \times \text{BR}$ as function of ϕ mass
 * 2.2 fb$^{-1}$ result:
 \sim10 $-$ 20% improvement over 1.0 fb$^{-1}$ search
95% CL exclusion results similar for each experiment
- each reach sensitivity $\tan\beta \sim 40 - 50$ for $m_A < 180$ GeV

Tevatron combination
- with only a fraction of available dataset, probing interesting region of $\tan\beta \sim 30$ [(m_{top}/m_b)]
CDF: $\phi b \rightarrow b\bar{b}b$ Search

- $\phi \rightarrow b\bar{b}$ search difficult due to large multijet background
 - consider ϕ produced in association with one b-jet
- [updated] 2.2 fb$^{-1}$ data with 3 b-tagged jets
- Model multijet backgrounds using dijet mass of 2 lead jets (m_{12}) & flavor separator (x_{tags})
 - search for enhancements in m_{12}
95% C.L. Mass-Dependent Cross Section Limits and MSSM Exclusions

- **Limits on $\sigma \times \text{BR}$**
 - Positive deviation at ~ 140 GeV for narrow-width case, with p-value = 0.9% (trial factors, 5.7% probability to observe such an excess at any masses)
 - General limits applicable to any narrow scalar with $b\bar{b}$ final states produced in association with b-jet

- **Translate limits in MSSM benchmark scenarios in (m_A, $\tan \beta$) parameter space**
 - Large $\tan \beta$ enhances the bbH coupling as well as increases width of the Higgs
2.6 fb$^{-1}$ search requires 3 b-tagged jets via NN b-tagger

- Improve sensitivity by separating into 3- and 4-jet channels
 - likelihood discriminates b-jet pair via Higgs signal from multijet backgrounds
 * separate low-mass (<130 GeV) and high-mass (>130 GeV) likelihoods
 - analysis relies on shape difference between signal & background
 * use double b-tagged data to predict triple b-tagged background shape

- No excess in dijet invariant mass: set exclusion limits in MSSM benchmark parameter space
 - Higgs mass term, $\mu < 0 \Rightarrow$ enhanced production for 3b mode gives strongest limits
[updated] 4.3 fb\(^{-1}\) search considers \(\phi b \rightarrow \tau_\mu \tau_{\text{had}} b\)

- use developed techniques from both \(\phi \rightarrow \tau \tau\) and \(\phi b \rightarrow bbb\) searches
- 2.7 fb\(^{-1}\) dataset result: PRL 104, 151801 (2010)

Discriminate against different backgrounds via MVA techniques

- NN based b-tagging algorithm of leading b-tag jet \(\Rightarrow\) suppress \(Z \rightarrow \tau \tau\) (Z+jets)
- construct \(t\bar{t}\) and QCD multijet discriminants per Higgs mass point

Take geometrical mean of top, multijet, and b-tag discriminants for final discriminant, \(D_f\)
95% C.L. mass-dependent limits calculated for $\sigma \times BR$

Translate into MSSM exclusions in $\tan\beta$ vs. m_A space

Search complimentary to $\phi \rightarrow \tau\tau$ channel as it does not suffer from $Z \rightarrow \tau\tau$ background
If $m_{H^\pm} < m_{\text{top}}$: search in top pair sample for decay to H^\pm

Consider two search modes based on H^\pm decays

- **Tauonic model:** $H^\pm \rightarrow \tau \nu$ (high $\tan \beta$)
- **Leptophobic model:** $H^\pm \rightarrow c\bar{s}$ (low $\tan \beta$)

Search dilepton, $\ell + \text{jets}$, $\ell + \tau$ top channels

Select high-p_T leptons, E_T, and b-tag

95% CL limits on $\text{BR}(t \rightarrow H^+ b)$

- DØ 1.0 fb$^{-1}$: PLB 682, 278 (2009)
- CDF 2.2 fb$^{-1}$: PRL 103, 101803 (2009)
next-to-MSSM Higgs decay search, 4.2 fb⁻¹ data
- h→bb branching ratio greatly reduced and dominantly decays to pair of pseudo-scalar Higgs “a”: h→aa
- general LEP search sets limit: M_h > 82 GeV

For masses: 2m_µ < M_a < ~2m_τ (~3.6 GeV)
- dominant decay: aa→µµµµ
 - signature: two pairs of extremely collinear muons due to low M_a
 - σ×BR limits < 5–10 fb (for M_h = 100 GeV)
 - BR(a→µµ) < 7%, assuming BR(h→aa)~1

For masses: 2m_τ < M_a < 2m_b (~9 GeV)
- dominant decay: aa→2µ2τ
 - signature: one pair of collinear muons and large ET from a→ττ decay
 - σ×BR limits: currently are factor of ≈1–4 larger than expected Higgs production

PRL, 103 061801 (2009)
next-to-MSSM Higgs decay search, 2.7 fb⁻¹ data
- search in top quark decays: \(t \rightarrow H^\pm b \rightarrow W^\pm Ab \rightarrow W^\pm \tau \tau b \)
- if charged Higgs \(\sim 100 \) GeV exists \(\Rightarrow BR(t \rightarrow H^\pm b) \sim 10-40\% \)

Search assumes mass of light pseudo-scalar Higgs (A) < 2\(m_b \)
- region not experimentally excluded
- select low-\(p_T \) isolated tracks created by \(\tau \) decay

Data in signal region agrees with expectations, set 95\% CL limits for various \(H^\pm \) and A masses

First such limits in the parameter space of top quark decays
CDF and DØ actively searching for Higgs in models beyond SM
- results with up to 4.3 fb\(^{-1}\) of data reported here

MSSM Higgs
- Tevatron reaching sensitivity of \(\tan\beta \sim 30\) for low \(m_A\)
- forthcoming searches with larger datasets should provide further insight into deviations from expectation at low \(m_A\)
- updated results with new combination expected soon

SM Higgs searches (for e.g., \(H \rightarrow WW\)) could be used to constrain the SM-like Higgs in MSSM
- see P. Draper et al., arXiv:0905.4721v2
- potential to probe significant regions of MSSM parameter space

Tevatron delivered > 9 fb\(^{-1}\) of data and more coming… Stay tuned for exciting results ahead!
Reference Slides
narrow cal clusters matched to low multiplicity tracks

- define [shrinking] signal and isolation cones around seed track’s axis (≡ highest p_T track; > 6 GeV)
- # of tracks inside signal cone defines τ decay mode
- add π^0 info to track-cal cluster ⇒ consistent with τ mass
- τ-id based on “cuts” to key variables (e.g., sum of isolation E_T, p_T tracks inside cone)

not associated with hadronic τ candidate

narrow cal energy clusters matched to tracks, with or without EM subclusters
⇒ separate τ’s into 3 categories, defined by their decay mode

- $\pi\nu$-like [type 1], $\rho\nu$-like [type 2], and 3-prongs [type 3]
- implement Neural Nets (NN) per τ-type to discriminate τ signal from multijet background

Type 1

τ^\pm \rightarrow π^\pm

Type 2

τ^\pm \rightarrow ρ^\pm

Type 3

τ^\pm \rightarrow ≥ 1 TRK + wide CAL cluster

signal cone
(shrinking with τ E_{cls}; $\theta_{\text{sig}} = \text{Min}(10^0, 5 \text{ GeV}/E_{\text{cls}})$)

isolation cone
(annulus: θ_{sig} to $\theta_{\text{iso}}=30^0$; $\Sigma E_{\text{iso}} \{\text{trks, } \pi^0\} < [2, 1 \text{ GeV}]$)
After final event selections for $\phi \rightarrow \tau\tau$, irreducible background from $Z \rightarrow \tau\tau$

- smaller contribution from EW and QCD multijet processes

Distinguish Higgs boson by its mass

- presence of neutrinos in final states \Rightarrow not possible to reconstruct $\tau\tau$ mass
- use visible mass: the invariant mass of the sum of the τ decay plus missing transverse energies
 - exploit fact that signal appears as an enhancement above $Z \rightarrow \tau\tau$

$$M_{VIS} = \sqrt{(P^\tau_1 + P^\tau_2 + P'_T)^2}$$

Use 4-vectors of:

- P^τ_1, P^τ_2 of visible tau decay products
- $P'_T = (E_T, E_x, E_y, 0)$, where E_x and E_y indicate components of E_T

M_{vis} used as input to $\sigma \times BR$ limit calculation
2.6 fb$^{-1}$ search requires

- separate into 3- and 4-jet channels: $p_T^{\text{jet}} > 20$ GeV, $|\eta| < 2.5$
- 3 b-tagged jets with NN based b-tagger, with 2 jets in pair: $p_T^{\text{jet}1,2} > 25$ GeV

6-variable likelihood discriminant [D]

- low-mass (3-jets, $m_\phi < 130$ GeV)
- high-mass (3-jets, $m_\phi > 130$ GeV)

Background composition determined from 3-jet sample

- fit MC simulated events to data over b-tagging points: 0-, 1-, 2-, and 3-tag

Background modeling

- irreducible $b\bar{b}b$ background \Rightarrow indistinguishable from any possible signal
- no control regions to normalize to data
 * model background shape using combination of data and simulation
 * predict 3 b-tag bkrgnd shape from 2 b-tag data, scaled by simulated 3/2-tag ratio
Multivariate Methods: Variables

$h_f \rightarrow \gamma\gamma$ Search

5-variable Neural Network (NN)

- $\sum_{trks} p_T(trks)$
- N_{cells} in CAL Layer 1 within $\Delta R < 0.2$
- N_{cells} in CAL Layer 1 within $0.2 < \Delta R < 0.4$
- number of assoc. CPS clusters with EM_{CAL}
- energy-weighted width of CPS clusters

$\phi b \rightarrow \tau_\mu \tau_{\text{had}} b$ Search

6-variable Likelihood Discriminant *(for jet pair with 1st and 2nd leading jets)*

- $\Delta\eta$ of 2-jets in the pair
- $\Delta\phi$ of 2-jets in the pair
- angle: $\phi = \cos(\text{lead jet, total }p_T \text{ of jet pair})$
- momentum balance: $\sqrt{|p_{b1}-p_{b2}|} / \sqrt{|p_{b1}+p_{b2}|}$
- combined rapidity of jet pair
- event sphericity

$\phi b \rightarrow b\bar{b}b$ Search

anti-top Discriminant (D_{top})

- $D_{\text{final}} = (D_{\text{top}} + D_{Mj} + D_{\text{lead }b-\text{tag}})^{1/2}$

<table>
<thead>
<tr>
<th>D_{final}</th>
<th>D_{top}</th>
<th>D_{Mj}</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{jets}</td>
<td>Muon p_T</td>
<td></td>
</tr>
<tr>
<td>$H_T = \Sigma_{\text{jets}} p_T[jets]$</td>
<td>Tau p_T</td>
<td></td>
</tr>
<tr>
<td>$E_T = p_T^\tau + p_T'^\tau + H_T$</td>
<td>$</td>
<td>\Delta\phi[\mu, \tau]</td>
</tr>
<tr>
<td>$</td>
<td>\Delta\phi[\mu, \tau]</td>
<td>$</td>
</tr>
<tr>
<td>$</td>
<td>\Delta\phi[\mu, \text{MET}]</td>
<td></td>
</tr>
<tr>
<td>$\mathcal{M}_T = [p_T'^\tau - p_T^{\tau}] / p_T^{\tau}$</td>
<td>$m_T[\mu, \tau, \text{MET}, \text{jet}]$</td>
<td></td>
</tr>
<tr>
<td>$\muon p_T$</td>
<td>$H_T = \Sigma_{\text{jets}} p_T[jets]$</td>
<td>$m_T[\mu, \tau, \text{MET}, \text{jet}]$</td>
</tr>
<tr>
<td>$m_T[\mu, \text{MET}]$</td>
<td>$m_T[\mu, \tau, \text{MET}]$</td>
<td>$m_T[\mu, \tau, \text{MET}, \text{jet}]$</td>
</tr>
<tr>
<td>$m_T[\mu, \tau, \text{MET}, \text{jet}]$</td>
<td>$m_T[\mu, \tau, \text{MET}, \text{jet}]$</td>
<td>$m_T[\mu, \tau, \text{MET}, \text{jet}]$</td>
</tr>
</tbody>
</table>

N-object m_T defined by: $m_T[O_1, ... , O_N] = \sqrt{\sum_{i=1}^{N} \sum_{j=1}^{N} p_T[O_i] \times p_T[O_j] \times (1 - \cos\Delta\phi[O_i; O_j])}$
For neutral Higgs searches: $\sigma \times BR$ limits \Rightarrow interpreted in MSSM

Tree-level: Higgs sector of MSSM described by m_A & $\tan \beta$
- radiative corrections introduce dependence on additional SUSY parameters

Five additional, relevant parameters
- M_{SUSY} - Common Scalar mass: parameterizes squark, gaugino masses
- X_t - Mixing Parameter: related to the trilinear coupling $a_t \rightarrow$ stop mixing
- M_2 - SU(2) gaugino mass term
- μ - Higgs mass parameter (where $\Delta_b \propto \mu \times \tan \beta$)
- $m_{\tilde{g}}$ - gluino mass: comes in via loops

Two common benchmarks
- m_h^{max} (max-mixing): Higgs boson mass, m_h, close to maximum possible value for a given $\tan \beta$
- no-mixing: vanishing mixing in stop sector \Rightarrow small Higgs boson mass, m_h

Constrained Model: Unification of SU(2) and U(1) gaugino masses

<table>
<thead>
<tr>
<th></th>
<th>m_h^{max}</th>
<th>no-mixing</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{SUSY}</td>
<td>1 TeV</td>
<td>2 TeV</td>
</tr>
<tr>
<td>X_t</td>
<td>2 TeV</td>
<td>0</td>
</tr>
<tr>
<td>M_2</td>
<td>200 GeV</td>
<td>200 GeV</td>
</tr>
<tr>
<td>μ</td>
<td>\pm 200 GeV</td>
<td>\pm 200 GeV</td>
</tr>
<tr>
<td>$m_{\tilde{g}}$</td>
<td>800 GeV</td>
<td>1600 GeV</td>
</tr>
</tbody>
</table>
DØ combination across search channels ⇒ $\tan\beta$ vs. m_A exclusions

- $\phi \rightarrow \tau\tau$ (1.0–2.2 fb$^{-1}$), $\phi b \rightarrow \tau\tau b$ (1.2 fb$^{-1}$), and $\phi b \rightarrow \bar{b}b\bar{b}$ (2.6 fb$^{-1}$)
- does not include recent 4.3 fb$^{-1}$ $\phi b \rightarrow \tau\tau b$ search
 * expect new combination soon

- Reach similar sensitivity as Tevatron combination on $\tau\tau$ searches

DØ Combination with 3 Search Channels

...see also M. Mulhearn’s talk, this conference
Fermiophobic $h_f \rightarrow \gamma \gamma$ Search

- **DØ 4.2 fb$^{-1}$ result**
- **Distinguish photons with misidentified jet backgrounds using NN**
 - implement energy-weighted width of DØ central preshower clusters
- **Search for excess of events in $\gamma \gamma$ mass spectrum**

Fermiophobic $h \rightarrow \gamma \gamma$ (3.0 fb$^{-1}$)

- **For Fermiophobic couplings, limit set at 95% CL:** $m_{hf} > 102.5$ GeV
- **CDF (3.0 fb$^{-1}$):** $m_{hf} > 106$ GeV
 - each result has reached similar sensitivity as a single LEP experiment
- **Tevatron results:** extend sensitivity for Br($h_f \rightarrow \gamma \gamma$) into $m_{hf} > 125$ GeV region, not accessible by LEP