Performance of the ATLAS Trigger with Proton Collisions at the LHC

John Baines (RAL)
for the ATLAS Collaboration
The ATLAS Detector

Muon chambers
Toroid magnets
Solenoid magnet
Semiconductor tracker
Transition radiation tracker
Pixel detector
LAr electromagnetic calorimeters
LAr hadronic end-cap and forward calorimeters
Tile calorimeters

μ, ν = 27 GeV $\eta(\mu) = 0.7$
μ, ν = 45 GeV $\eta(\mu) = 2.2$
$M_{\mu\mu} = 87$ GeV

$Z+\mu\mu$ candidate in 7 TeV collisions
The ATLAS Trigger

Level 1 (LVL1)
- Fast Custom-built electronics

Level 2 & Level 3 (Event Filter):
- Software based running on large PC farm

Level-2:
- Fast custom algorithms
- Reconstruction mainly in Regions of Interest (RoI) => limited data access

Level 3 = Event Filter (EF)
- Offline tools inside custom wrappers,
- Access to full event information
Trigger Selection

Trigger chain:
- Sequence of reconstruction and selection algorithms (~10 per chain)
- Chains for each trigger physics object and threshold i.e.

<table>
<thead>
<tr>
<th>Trigger physics objects</th>
<th>Lowest p_T or E_T Thresholds (GeV)</th>
<th>LVL1</th>
<th>HLT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron/photon</td>
<td></td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Tau</td>
<td></td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>Muon</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Missing energy (MET)</td>
<td></td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Jet</td>
<td></td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>Total energy (SumET)</td>
<td></td>
<td>10</td>
<td>90</td>
</tr>
</tbody>
</table>

Also chains for B-tagged jets & B-physics signatures

Trigger menu:
- Collection of trigger signatures: ~200-500 chains in current menus
- Also defines pre-scale factors
- Evolves to match LHC luminosity & physics requirements

Talk(Track 13): The ATLAS High Level Trigger Configuration and Steering Software: Experience with 7 TeV Collisions: S. George
Trigger Commissioning & Evolution

Commissioning with cosmics, single-beam 2008 & 2009:

- Initial timing in of Level-1 signals, ready for first collisions

First Collisions: Dec 2009: 900 GeV; Mar 2010: 2.36 TeV; April & May 2010: 7 TeV

- Level-1 active
- HLT running online in monitoring mode - no HLT rejection*:
 - Validation of HLT ready to activate when needed
 - Online beam-spot determination using Level-2 Tracking

Progressive activation of HLT:

- Prescale sets pre-generated covering fixed luminosity ranges:
 - Can be updated before or during the run to match machine conditions.

Minimum Bias Trigger

• Minimum Bias Scintillators (MBTS) installed in each end-cap (2.09 < |η| < 3.84)
• Primary Minimum Bias trigger MBTS_1:
 - at least 1 counter above thresh & filled LHC bunch
• Efficiency 99.7% for collisions with one track with \(p_T > 500 \) MeV
• Time Difference between forward and backward counters signal collisions events:

Poster: Minimum Bias Trigger in ATLAS: R. Kwee
Jet Triggers

For: QCD multijet prodn., W->τν, SUSY, top, generic searches (pp → XX, X → jj), VBF

- Currently triggering based on Level-1:
 - Sums E_T in the EM and Hadronic Calorimeters
 - Sliding window of up to 0.8x0.8 in $η\times\phi$ with 0.2 step
 - Thresholds well modelled by MC
 - 100% effic. above turn-on

Level-1 effic. v. $η$ for offline jet $p_T > 60$ GeV

Effic. v. p_T for offline jet to pass Level-1 trigger

Level-1 & HLT use EM Energy scale
e & γ Triggers

3-20 GeV for b/c/tau decays, SUSY, turn-on curves
20-100 GeV for W/Z/top/Higgs physics
> 100 GeV for exotics

Level-1 Trigger based on Calo. energy in:
- E_T within central core : $\Delta \eta \Delta \phi$=0.2x0.2
- Can require EM and Hadronic isolation
 - Close to 100% efficient above turn-on
 - Efficiency well modelled by Simulation

HLT Rejection enabled when L1_EM2>~200Hz
$L > \sim 1.5 \times 10^{29}\text{cm}^{-2}\text{s}^{-1}$
e & γ : HLT

- HLT uses full granularity calo. to calculate E_T & cluster shape parameters e.g.

$$R_\eta = \frac{E(3 \times 7)}{E(7 \times 7)}$$

Cell units:

$\Delta \eta \times \Delta \phi = 0.025 \times 0.025$

- Additional rejection achieved by matching calorimeter clusters to Inner Detector Tracks

![Graph showing R_η distributions for data and MC, peaked towards 1 for e](image)

![Graph showing Level-2 and Event Filter Tracking efficiency vs. p_T](image)
Level-1 Muon

Low P_T: J/Ψ, Υ and B-physics
High P_T: H/Z/W/tau \rightarrow μ

Level-1 Muon Trigger:
- Barrel: Resistive Plate Chambers
- Endcap: Thin Gap Chambers

• Performance evaluated w.r.t. offline
 ⇒ Close to nominal efficiency
 ⇒ Good agreement with Simulation

Barrel effic. w.r.t. Offline for data & MC

RPC

Includes ~20% inefficiency due to support structures etc.

TGC

Endcap efficiency w.r.t. Offline
HLT Muon Trigger

Stand-alone: Muons reconstructed at the HLT including information from the precision muon detectors
- Effic. > 98% w.r.t. Level-1 for muons $p_T > 4$ GeV
- Good agreement with Simulation

Combined: Muon track segment combined with inner detector track

ATLAS Preliminary
$\sqrt{s} = 7$ TeV, Data 2010

Level-2 Muon stand-alone effic. w.r.t. Level-1

Level-2 Combined effic. w.r.t. Level-1
Tau Trigger

- Dedicated trigger for taus decaying to one or more hadrons
- Level-1: calculates E_T using e.m. and hadronic calo in core ($\Delta\eta \times \Delta\phi = 0.2 \times 0.2$)
 - can require isolation
- HLT: Tau identified by well collimated calo. cluster with small no. of associated tracks

Poster: Performance of the ATLAS tau trigger with 7 TeV collision data at the LHC: M. Shamim
Missing E_T Trigger

For: $W \rightarrow \tau\nu$, BSM, SUSY, orthogonal trigger for efficiency studies.

Level-1: Missing E_T and Sum E_T calculated based on Calorimeter Cells

Level-2: Add muon information

Event Filter: Recalculate using Calo. & Muon

10 GeV threshold running un-prescaled to $L \sim 10^{30}$ cm$^{-2}$ s$^{-1}$

Menu also includes combined triggers:

- e.g. tau + Missing E_T

Event Filter Sum E_T v. offline Sum E_T

Comparision of Event Filter Missing ET in 7 TeV Data with Simulation

- Good agreement of Missing E_T turn-on with MC
- Good agreement of Online and offline quantities

ATLAS Preliminary

- 5 GeV Threshold
- 20 GeV Threshold

ATLAS Preliminary
Summary

• The ATLAS Trigger has been successfully commissioned:
 ▶ Instrumental in delivering data for first physics

 • Very inclusive Level-1 based trigger to start
 • Evolving to track LHC luminosity:
 ⇒ HLT ready for activation when needed
 ⇒ Several HLT triggers now active
 • Generally excellent agreement with Offline & MC
 • Continued evolution matching lumi. & physics:
 • pre-scale lower thresholds
 • move from loose to medium HLT cuts
 • use of isolation requirements
 • higher multiplicity & multi-object triggers
 • Add. Triggers: Jets with B-tagging, B-physics
 • Perf. with pile-up confirmed using Data & MC

=> The ATLAS trigger is ready and able to meet the challenges ahead and deliver the data for physics in 2010/11 and beyond.
Backup
Level-1 Trigger

- Timing of LVL1 triggers determined to 5-10ns using splash events
Triggers for Onia & B-Physics

- Onia & Physics analysis uses Min. Bias (early data) and Single Muon triggers
- When single muon rate becomes too high - use Dimuon Triggers:
 - Two Level-1 muons confirmed at HLT, or
 - Single Level-1 muon + second muon found at the HLT:
- Find Inner Detector tracks in large RoI at Level-2
- Extrapolate to associate Muon Spectrometer hits

=> Increased efficiency at low p_T
ID Tracking & Online Beamspot Measurement

For events with a MBTS Trigger:
• Fast Level-2 tracking reconstructs tracks in full Inner Detector
• Primary Vertex reconstructed
⇒ Online measurement of beam position
⇒ Information fed back to LHC
⇒ Can be used in trigger, e.g. Impact parameter based B-jet tagging
Activating the e & γ HLT triggers

Trigger Rates v. time with active HLT e & γ selections
First $W \rightarrow \nu v$ candidate in ATLAS

L2 trigger

Electron candidate

Missing E_T

$P_T(e^+) = 34$ GeV

$\eta(e^+) = -0.42$

$M_T = 57$ GeV

$E_{T,\text{Miss}} = 26$ GeV

Offline reconstruction