$\Delta M_{\rm W} \leq$ 10 MeV/c² at the LHC: a forlorn hope?^a

A. Siódmok^{1,3,4} in coll. with F. Dydak², F. Fayette³, M. W. Krasny³ and W. Płaczek⁴

¹Institut fur Theoretische Physik, KIT, Karlsruhe, Germany ²CERN, Geneva, Switzerland ³LPNHE, Paris, France ⁴Jagiellonian University, Cracow, Poland ^aBased on: CERN-PH-EP/2010-007, arXiv:1004.2597, submitted to EPJC

W boson mass - one of the most important Standard Model measurements at the LHC

New physics (Higgs? SUSY? ...)

• Indirect search:

 $M_W = \sqrt{\frac{\pi lpha}{\sqrt{2}G_F} \frac{1}{\sin \Theta_W \sqrt{1-\Delta_R}}}$

Current precision of the W mass (for an integrated LHC luminosity of 10 fb^{-1})

LEP	$\Delta M_W = 33 \; { m MeV}$
Tevatron	$\Delta M_W = 31 \; { m MeV}$
ATLAS TDR:	$\Delta M_W = 25 \; { m MeV}$
N. Besson et al. ^a	$\Delta M_W = 7 \; { m MeV}$
CMS TDR:	$\Delta M_W = 30 \text{ MeV}$

Determination of the M_W

• Drell-Yan process:

$$p + p \longrightarrow W^{\pm} + X \longrightarrow I^{\pm} + \overset{(-)}{\nu_I} + X$$

 $\Delta N W = 30$ we v (pdf contribution < 10 MeV) V. Buge et al.^b $\Delta M_W = 20 \text{ MeV}$ ^aEur. Phys. J. C57 (2008) 627 ^bCERN-CMS-NOTE-2006-061

• Observables: charged lepton transv. moment. $p_{T,l}$,...

• Peak position is driven not only by M_W !

Can we really improve the measurement precision of the EW parameters at the LHC?

Roots of the LHC specific problems (Tevatron vs LHC)

pp (Tevatron) *pp*v s (LHC) collisions

LHC: Collisions at much higher energy!

• LHC: 30% of W and Z bosons are produced by s,c and b quarks

• At the Tevatron only the first quark family is relevant

flavour decomposition of W cross sections

- LHC: symmetry of the $p_{T,l}$ spectra is broken by valence quarks
- \Rightarrow better knowledge of *u* and *d* quarks than at the Tevatron needed!
- \Rightarrow "W⁺ \neq W⁻", separate analyses of M_{W^+} and M_{W^-} !
 - [or equivalently, the average $\Delta M = (M_{W^+} + M_{W^-})/2$ and difference $(M_{W^+} M_{W^-})$]
- \Rightarrow relative calibration of the lepton I^+ and I^- momentum scales

ATLAS and CMS analyses do not take this into account

 Need to understand heavy flavours with much better precision

Present precision of: "missing" PDF and its impact on the M_W measurement error

Reported work

Cuts and statistics:

• Cuts: $p_{T,I} > 20 \text{ GeV } \& |\eta_I| < 2.5$, where $(I = \{e, \mu\})$ Charged lepton smearing: ATLAS Inner Detector • LHC energy: $\sqrt{s} = 14 \text{ TeV}$ ■ Luminosity 10. fb⁻¹

Tools: • MC: WINHAC, ZINHAC QCD effects incorporated from PYTHIA • Study based on $O(10^{10})$ simulated events

$u_{\rm v}, d_{\rm v}$	ΔM	$\Delta(M_{W^+} - M_{W^-})$	s, c	ΔM	$\Delta(M_{W^+} - M_{W^-})$	b	$\Delta M [MeV]$
$ \begin{array}{ c c } u_{\rm v}^{\rm bias} = 1.05 u_{\rm v}^{\rm bias} \\ d_{\rm v}^{\rm bias} = d_{\rm v} - 0.05 u_{\rm v}^{\rm bias} \end{array} $	+79 MeV	$+115 { m MeV}$	$\begin{bmatrix} c^{\text{bias}} = 0.9 c\\ s^{\text{bias}} = s + 0.1 c \end{bmatrix}$	$-148 \mathrm{MeV}$	$17 { m MeV}$	$b^{\text{bias}} = 1.2 b$	-42
$\begin{array}{l} u_{\rm v}^{\rm bias} = 0.95 u_{\rm v}^{\rm bias} \\ d_{\rm v}^{\rm bias} = d_{\rm v} + 0.05 u_{\rm v}^{\rm bias} \end{array}$	-64 MeV	-139 MeV	$\begin{array}{c} c^{\rm bias} = 1.1c\\ s^{\rm bias} = s - 0.1c \end{array}$	+111 MeV	$-11 { m MeV}$	$b^{\text{bias}} = 0.8 b$	39

Can we constrain the PDFs with a required precision using W and Z boson data collected at the LHC? No, we cannot. External constraints are needed.

The way forward

LHC-specific measurement and analysis strategy^a

^aSee CERN-PH-EP/2010-007, arXiv:1004.2597 for details.

An extension of the canonical LHC programme:

or

deuteron-deuteron collisions at the LHC

DIS experiment with deuterium and hydrogen target (LOI for such an experiment submitted to SPSC and LHCC)

LHC require a dedicated EW SM measurement and analysis programme in order to improve the LEP and the Tevatron results.