WIMPless Dark Matter: Models and Signatures

Jason Kumar
University of Hawai‘i
Collaborators

- Johan Alwall
- Vernon Barger
- Jonathan Feng
- John Learned
- Danny Marfatia
- Enrico Sessolo
- Stefanie Smith
- Louis Strigari
- Shufang Su
 - 0803.4196, 0806.3746, 0808.4151, 0908.1768, 1002.3366, 1004.4573
The WIMP miracle

- non-relativistic thermal dark matter → solve Boltzmann eq.
 - \(\rho \propto \langle \sigma_A v \rangle^{-1} \) (Zeldovich; Lee, Weinberg; Scherrer, Turner; Kolb, Turner)
 - \(\langle \sigma_A v \rangle \) basically determines \(\rho \)
- to get observed DM density need \(\langle \sigma_A v \rangle \sim 1 \text{ pb} \)

- stable matter with coupling and mass of the electroweak theory would have about right relic density for dark matter
 - WIMP miracle

- one of the best theoretical ideas for dark matter

- guide for most experimental searches

- but is this miracle really a WIMP miracle?
WIMPless dark matter setup

- extension of standard “low-energy SUSY” setup (GMSB)
- one SUSY-breaking sector mediated to multiple sectors
 - \(m_{\text{soft}} \propto g^2 (F/M) \)
 - but \(\langle \sigma v \rangle \propto g^4/m^2 \)
 - so for stable particle at SUSY-breaking scale, \(\rho \propto (F/M)^2 \)
 - depends only on SUSY-breaking spurion
- DM candidate in hidden sector
 - assume symmetry stabilizes a particle at soft scale
 - soft scale can be anything, but relic density is universal
 - WIMP Miracle \(\rightarrow \) it’s also right!
 - WIMPLess Miracle

\[
W = \lambda S \bar{\Phi} \Phi + \lambda_x S \bar{\Phi}_x \Phi_x
\]

\[
\langle S \rangle = M + \theta^2 F
\]
WIMPless Miracle

• a new, well-motivated scenario for dark matter (scalar or fermion)

• natural dark matter candidates with approximately correct mass density

• unlike “WIMP miracle” scenario, here dark matter candidate can have a range of masses and couplings

• opens up the window for observational tests, beyond standard WIMP range

• implications for collider, direct and indirect detection strategies
Yukawa coupling to SM

- if no connection between SM and hidden sector…
 - only gravitational effects
Yukawa coupling to SM

- if no connection between SM and hidden sector…
 - only gravitational effects
- but could have connectors between those sectors
 - exotics (Y) charged under both SM and hidden sector
 - exotic 4th generation multiplet
- Yukawa couplings between dark matter, SM matter and exotic connectors
 - get nuclear scattering through light or heavy (loop) quarks
 - annihilation to SM matter

\[W = \lambda X Y_L f_L + \lambda X Y_R f_R + m Y_L Y_R \]
New WIMPless signal features....

- **scalar** WIMPless DM
 - can have **larger** σ_{SI} than expected for neutralinos
 - for σ_{SI}, need to couple to $f^\dagger_L f_R$
 - need light quark mass or squark mixing insertion
 - chirality suppression
 - with scalar DM, chirality flip from m_Y
 - not suppressed

- **Majorana fermion** WIMPless DM
 - for Majorana fermion DM, $\sigma_{SI}=0$, but σ_{SD} is non-zero
 - most models will be seen first through σ_{SI}, σ_{SD} can confirm
 - **Majorana fermion** WIMPless DM is only found through σ_{SD}
Novel detection prospects....

- **direct detection**
 - DAMA can (?) be matched with low-mass particle with $\sigma_{SI} \sim 10^{-2.5}$ pb
 - CoGeNT has a signal which can fit similar region
 - we’ll leave aside the controversy (XENON, CDMS, etc.)
 - hard to fit with neutralino models (σ_{SI} suppressed, mass larger)
 - WIMPless DM scalar fits the bill

- **indirect detection** (neutrino)
 - excel at low mass (Super-K) and σ_{SD} (IceCube)
 - Super-K can make model-independent check of DAMA/CoGeNT (soon!)
 - may get signals at IceCube/DeepCore from σ_{SD} of Majorana DM

- **Tevatron/LHC**
 - can produce YY pairs through QCD processes
 - missing $E_T +$ jets signal
 - results with short-term data (including most of DAMA/CoGeNT)
Low-mass WIMPless scalar DM….

- assume hierarchical Yukawa coupling
 - DM couples to 3rd generation quarks only
 - simple FCNC solution
 - nuclear scattering through b-quark loop (couples to gluons)
 - can fit near global region (Collar, Hall, Hooper, McKinsey)
 - $\lambda_b \sim 0.8$, $m_X \sim 6-7$ GeV, $m_Y \sim 400$ GeV
 - “natural” Yukawa value
- how can this be checked?
 - preferably, with present or near-term data
Super-K detection prospects....

- DM captured by sun through elastic scattering
 - annihilates to SM $\rightarrow \nu_{\mu}$
 - event rate controlled by solar capture rate
 - depends on σ_{XN}
- Super-K advantage
 - sensitive to low energy ν
 - better for low-mass DM
- upshot \rightarrow can be tested with data already taken
 - need analysis of fully-contained muon sample to extend below $m_X \sim 10$ GeV

Projected Super-K bounds using fully-contained events and 3000 live days, plus WIMPless ($0.3<\lambda_b<1.0$) and neutralino (Bottino, et al) predictions
Collider searches for $Y=T'$

- $pp \rightarrow T'T'$ controlled by QCD
 - $300 \text{ GeV} < m_{T'} < 600 \text{ GeV}$
 (perturbativity, precision EW, direct search)
- $T' \rightarrow X t \rightarrow X + \text{jets}$ required by hidden sector charge
 - $X \rightarrow \text{missing } E_T$
 - more distinctive than standard 4^{th} generation search

- upshot (via MadGraph, MadEvent, Pythia 6.4.20, PGS4)
 - good prospects with Tevatron
 - definitely will find with early LHC data
Majorana fermion WIMPless DM....
(not targeting low mass)

- IceCube/DeepCore will soon have the best bounds on σ_{SD}
 - X couples to 1st gen quarks (dominate nucleon spin)
 - τ, stau, sneutrino channels avoid chirality suppression
- 3σ evidence obtainable at IceCube/DeepCore in ~5 yr.
 - $\lambda_{u,d} \sim 0.5$
- DeepCore provides an edge for lower energy ν (~50 GeV)
 - advantage for lower mass DM and superpartner cascades
- at high energy, need IceCube

3σ bounds at IceCube/DeepCore
$m_{\text{stau}} = 137 \text{ GeV}$, $m_{\chi} = 94.5 \text{ GeV}$
(Dimopoulos, Thomas, Wells)
Conclusion

• new theoretical scenario for dark matter
 – large range of masses and couplings

• possible explanation for results of DAMA/LIBRA, CoGeNT

• interesting searches at Tevatron and LHC

• signals possible at Super-Kamiokande and IceCube/DeepCore

Mahalo!
Back-up slides
Collider cuts

- Tevatron (hadronic)
 - precuts
 - no isolated leptons
 - jets \(\geq 5 \) (\(p_T > 20 \text{ GeV} \))
 - missing \(E_T > 100 \text{ GeV} \)
 - isolation (jet from missing \(p_T \))
 - \(\Delta \phi > 90^\circ \) for leading jet
 - \(\Delta \phi > 50^\circ \) for second jet
 - additional cuts
 - missing \(E_T \)
 - 150, 200, 250 GeV
 - \(H_T = \sum |p_T| \)
 - 300, 350, 400 GeV
 - jets \(\geq 6 \) (\(p_T > 20 \text{ GeV} \))

- LHC (hadronic)
 - precuts
 - no isolated leptons
 - jets \(\geq 5 \) (\(p_T > 40 \text{ GeV} \))
 - missing \(E_T > 100 \text{ GeV} \)
 - isolation
 - \(\Delta \phi > 11.5^\circ \) for first 3 jets
 - additional cuts
 - missing \(E_T \)
 - 150, 200, 250, 300 GeV
 - \(H_T \)
 - 400, 500 GeV
 - jets \(\geq 6 \) (\(p_T > 40 \text{ GeV} \))
IceCube/DeepCore

- superpartner channel
 - spectrum from Dimopoulos, Thomas, Wells
 - $m_{\text{stau}} = 137 \text{ GeV}$
 - $m_{\text{sneutrino}} = 111.5 \text{ GeV}$
 - $m_\chi = 94.5 \text{ GeV}$
- assume 1° angular acceptance
- IC E_μ-threshold = 100 GeV
- DC E_μ-threshold = 35 GeV
- account for matter effects in sun and vacuum oscillation
 - including τ-regeneration