SEARCH FOR FOURTH GENERATION T' QUARK AT THE TEVATRON

Alison Lister
Université de Genève
On behalf of the CDF and D0 Collaborations

Another Quark Generation?

For b' search see L. Scodellaro Sat. 15:20 track 10

- Not forbidden by EWK precision data
 - Mass order few hundred GeV
 - Small mass splitting preferred: M(t')-M(b') < M(W)
- Would have big effect on Higgs sector
 - Oblique corrections could drive mass up to ~500 GeV
- Could be lepton too if $m(v_4) > -50$ GeV

Why not 4 generations?

- Z-width measurements from LEP
- Constraint
 - $M(v_4) > \frac{1}{2} M(Z)$

Why not 4 generations?

- Generation Mixing
 - CKM Matrix
- Constraint
 - Flavour physics
 measurements and unitarity
 triangle sets limits on 4th
 generation models

- BUT
 - Mixing between 3rd and 4th generation only weakly constrained

Why not 4 generations?

- Electroweak Effects
- Constraints
 - S,T fits to SM constrain available phase-space for 4th generation
- But
 - Possible with electroweak radiative corrections
 - Could even argue would agree better ©

parameter set					
(a)	310	260	115	0.15	0.19
(b)	320	260	200	0.19	0.20
(c)				0.21	
(d)	400	350	115	0.15	0.19
(e)	400	340	200	0.19	0.20
(f)	400	325	300	0.15 0.19 0.21	0.25

Looks like a Top... but not quite...

Also: Generic search for events in this final state in the tails of some distributions....

Our Search: Lepton + Jets + MET

Good compromise between BR and background rates

Trigger on electron or muon CDF: new: muons from jets+MET trigger D0: some triggers with ≥1 jets too

Event Selection

Number are: D0 (CDF)

1 isolated electron or muon $p_T > 20$ (25) GeV

Lepton Light quark jet Light quark jet Missing Transverse Energy > 20 / 25 GeV b jet b jet

Mis-measured muon removal

QCD Removal cuts

Event Counts:

1809 (3724) events

1002 (1677) electrons

807 (2047) muons

4 jets (no b-tagging) corrected $E_T > 20$ GeV D0: leading jet > 40 GeV

Sample Composition

- Signal modelled as g->t't'bar
 - 100% BR to Wb
 - Width < detector resolution
- Dominant backgrounds
 - ttbar
 - 100% BR to Wb
 - Constrained to NLO cross section
 - W+jets
 - Merged from W+0...3p exclusive + W+4p inclusive
 - QCD (1 jet fakes a lepton)
 - Shapes from jet-triggered data
 - Require limit on fraction of energy in EM calorimeter
 - Normalisation from fit with Missing E_⊤ cut relaxed
 - Other: single top, diboson, Drell-Yan, Z+jets
 - From MC

t'-mass	theory cross section (pb)	t' events
200 GeV	3.189	441.
225 GeV	1.400	218.
250 GeV	0.800	133.
275 GeV	0.430	75.
300 GeV	0.227	44.
325 GeV	0.121	23.5
350 GeV	0.064	12.6
375 GeV	0.034	7.0
400 GeV	0.018	3.7
425 GeV	0.010	2.0
450 GeV	0.005	1.0
475 GeV	0.003	0.5
500 GeV	0.001	0.3

All MC samples are run through CDF detector simulation

Discriminating Variables

Total transverse reconstructed energy (H_T)

$$H_T = \sum_{jets} E_{T,jets} + E_{T,lepton} + E_T$$

Discriminating Variables

- Reconstructed top mass (M_{reco} CDF, M_{fit} D0)
 - From the combination with the lowest χ²
 - e.g CDF

$$\chi^{2} = \sum_{i=l,4jets} \frac{(p_{T}^{i,fit} - p_{T}^{i,meas})^{2}}{\sigma_{i}} + \sum_{j=x,y} \frac{(p_{j}^{UE,fit} - p_{j}^{UE,meas})^{2}}{\sigma_{j}} + \frac{(M_{jj} - M_{W})^{2}}{\Gamma_{W}^{2}} + \frac{(M_{l\nu} - M_{W})^{2}}{\Gamma_{t}^{2}} + \frac{(M_{blj} - M_{t})^{2}}{\Gamma_{t}^{2}} + \frac{(M_{bl\nu} - M_{t})^{2}}{\Gamma_{t}^{2}}$$

t' normalisation arbitrary

Discriminating Variables

The Fit

- '3D' fit: H_T vs M_{reco} vs N_{jet} / good-bad χ²
 - New: separate into 4 and ≥5 jets and into χ² <8 and χ²>8

- Binned Poisson Likelihood approach
 - Systematics represented as nuisance parameters
 - Remove by profiling
 - Obtain posterior in signal cross section
 - Using Bayes Theorem and uniform prior

The Fit

- 2D fit: H_T vs M_{fit}
- Fit for background only
 - 3 parameter fit: ttbar, QCD and W-like (mostly W +jets)
- Fit for background + signal
 - 4 parameter fit: also t't'bar (free)
- Likelihood ratio as test statistic

$$L = -2\log(\frac{P_{S+B}}{P_B})$$

- Set limits using CL_S method
 - $1 CL_{S+B} / CL_B = 0.95 -> 95\%$ CL exclusion

Systematics

CDF

- Three types
 - All Gaussian-constrained
- Normalization uncertainties
 - Integrated luminosity, ID scale factors, background cross sections
- Shape (+normalization) uncertainties
 - jet energy scale, Q² scale, ISR/FSR
- MC statistics
 - Handled using "Barlow-Beeston lite" method
 - Bins combined automatically to ensure accuracy
- D0
 - Profiling all systematics
 - Same code as used for Higgs exclusion

Model Independent Limits (2.8 fb⁻¹)

No signal model other than "something that is in the high M_{reco} , high H_T region"

- Starting from highest H_T and M_{reco} bin
 - Get p-value of that bin
 - Extend by 1 bin in each dimension and repeat fit
- Largest excess
 - M_{reco} > 250 MeV/c², H_T > 550 MeV
 - 29 events, 18.03 expectedp-value 0.01
- Global p-value takes into account trials factor
 - Excess ~2 sigma

P-value:

Probability that the number of observed events in that range is compatible with the background only hypothesis

The Variables in Data

Limits

- Assume BR(t'->Wb) ≈100%
- Assume strong SM production (g->t't'bar)

Exclude M(t') < 335 (296) GeV @ 95% CL at CDF (D0)

Conclusions

- Search for 4th generation top-like quark
- No significant excess seen in high H_T, high M_{reco}
 - Largest excess order 2 sigma
 - Seen by both experiments
 - Not going away and not getting larger... most furstrating ©
- Exclude 4th generation t' with 100% BR to Wq up to M(t') < 335 (296) GeV @ 95% CL at CDF (D0)

BACKUP

Likelihood Functions

CDF Run 2 (4.6 fb⁻¹) - t' Search Likelihoods - Preliminary

The Variables in Data

Previous Results

1118 events
Better QCD model
Better QCD removal cuts
New W+jets modelling