SEARCH FOR FOURTH GENERATION T’ QUARK AT THE TEVATRON

Alison Lister
Université de Genève
On behalf of the CDF and D0 Collaborations
Presenting today

9 fb⁻¹ last week
Another Quark Generation?

- Not forbidden by EWK precision data
 - Mass order few hundred GeV
 - Small mass splitting preferred: $M(t') - M(b') < M(W)$
- Would have big effect on Higgs sector
 - Oblique corrections could drive mass up to ~ 500 GeV
- Could be lepton too if $m(\nu_4) > \sim 50$ GeV

For b' search see L. Scodellaro
Sat. 15:20 track 10
Why not 4 generations?

- Z-width measurements from LEP
- Constraint
 - $M(\nu_4) > \frac{1}{2} M(Z)$
Why not 4 generations?

- **Generation Mixing**
 - CKM Matrix

- **Constraint**
 - Flavour physics measurements and unitarity triangle sets limits on 4\(^{\text{th}}\) generation models

- **BUT**
 - Mixing between 3\(^{\text{rd}}\) and 4\(^{\text{th}}\) generation only weakly constrained
Why not 4 generations?

- Electroweak Effects
- Constraints
 - \(S, T \) fits to SM constrain available phase-space for 4\(^{th}\) generation
- But
 - Possible with electroweak radiative corrections
 - Could even argue would agree better 😊

<table>
<thead>
<tr>
<th>parameter set</th>
<th>(m_{u_4})</th>
<th>(m_{d_4})</th>
<th>(m_H)</th>
<th>(\Delta S_{\text{tot}})</th>
<th>(\Delta T_{\text{tot}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>310</td>
<td>260</td>
<td>115</td>
<td>0.15</td>
<td>0.19</td>
</tr>
<tr>
<td>(b)</td>
<td>320</td>
<td>260</td>
<td>200</td>
<td>0.19</td>
<td>0.20</td>
</tr>
<tr>
<td>(c)</td>
<td>330</td>
<td>260</td>
<td>300</td>
<td>0.21</td>
<td>0.22</td>
</tr>
<tr>
<td>(d)</td>
<td>400</td>
<td>350</td>
<td>115</td>
<td>0.15</td>
<td>0.19</td>
</tr>
<tr>
<td>(e)</td>
<td>400</td>
<td>340</td>
<td>200</td>
<td>0.19</td>
<td>0.20</td>
</tr>
<tr>
<td>(f)</td>
<td>400</td>
<td>325</td>
<td>300</td>
<td>0.21</td>
<td>0.25</td>
</tr>
</tbody>
</table>
Looks like a Top... but not quite...

Assume SM production for limits

Tevatron
~85% qq
~15% gg

Also: Generic search for events in this final state in the tails of some distributions....
Our Search: Lepton + Jets + MET

Good compromise between BR and background rates
Event Selection

Event Counts:
- 1809 (3724) events
- 1002 (1677) electrons
- 807 (2047) muons

Trigger:
- on electron or muon
- CDF: new: muons from jets + MET trigger
- D0: some triggers with ≥1 jets too

Missing Transverse Energy:
- > 20 / 25 GeV

4 jets (no b-tagging):
- corrected $E_T > 20$ GeV
- D0: leading jet > 40 GeV

1 isolated electron or muon $p_T > 20$ (25) GeV

Mis-measured muon removal

QCD Removal cuts
Sample Composition

- Signal modelled as $g \rightarrow t't'b$:
 - 100% BR to Wb
 - Width < detector resolution

- Dominant backgrounds:
 - $t\bar{t}$
 - 100% BR to Wb
 - Constrained to NLO cross section
 - $W+jets$
 - Merged from $W+0…3p$ exclusive + $W+4p$ inclusive
 - QCD (1 jet fakes a lepton)
 - Shapes from jet-triggered data
 - Require limit on fraction of energy in EM calorimeter
 - Normalisation from fit with Missing E_T cut relaxed
 - Other: single top, diboson, Drell-Yan, $Z+jets$
 - From MC

All MC samples are run through CDF detector simulation
Discriminating Variables

- Total transverse reconstructed energy (H_T)

\[H_T = \sum_{jets} E_{T,jets} + E_{T,lepton} + E_T \]

t' normalisation arbitrary
Discriminating Variables

- Reconstructed top mass (M_{reco} CDF, M_{fit} D0)
 - From the combination with the lowest χ^2
 - e.g CDF

$$
\chi^2 = \sum_{i=l,4jets} \left(\frac{p_T^{i,\text{fit}} - p_T^{i,\text{meas}}}{\sigma_i} \right)^2 + \sum_{j=x,y} \left(\frac{p_{j}^{UE,\text{fit}} - p_{j}^{UE,\text{meas}}}{\sigma_j} \right)^2 + \frac{(M_{jj} - M_W)^2}{\Gamma_W^2} + \frac{(M_{t\nu} - M_W)^2}{\Gamma_W^2} + \frac{(M_{b,jj} - M_t)^2}{\Gamma_t^2} + \frac{(M_{b,t\nu} - M_t)^2}{\Gamma_t^2}
$$

- t' normalisation arbitrary
Discriminating Variables

-
 \(t\bar{t} \) production
 \(m(t') = 300 \text{ GeV} \)

-
 multijet background

-
 W+jets
The Fit

- ‘3D’ fit: H_T vs M_{reco} vs N_{jet} / good-bad χ^2
 - New: separate into 4 and ≥ 5 jets and into $\chi^2 < 8$ and $\chi^2 > 8$

- Binned Poisson Likelihood approach
 - Systematics represented as nuisance parameters
 - Remove by profiling
 - Obtain posterior in signal cross section
 - Using Bayes Theorem and uniform prior
The Fit

- 2D fit: H_T vs M_{fit}
- Fit for background only
 - 3 parameter fit: ttbar, QCD and W-like (mostly $W+\text{jets}$)
- Fit for background + signal
 - 4 parameter fit: also $t't'\text{bar}$ (free)
- Likelihood ratio as test statistic
- Set limits using $C L_S$ method
 - $1 - C L_{S+B} / C L_B = 0.95 \rightarrow 95\% \ C L \ exclusion$
Systematics

- **CDF**
 - Three types
 - All Gaussian-constrained
 - Normalization uncertainties
 - Integrated luminosity, ID scale factors, background cross sections
 - Shape (+normalization) uncertainties
 - Jet energy scale, Q^2 scale, ISR/FSR
 - MC statistics
 - Handled using “Barlow-Beeston lite” method
 - Bins combined automatically to ensure accuracy

- **D0**
 - Profiling all systematics
 - Same code as used for Higgs exclusion
No signal model other than “something that is in the high M_{reco}, high H_T region”

- Starting from highest H_T and M_{reco} bin
 - Get p-value of that bin
 - Extend by 1 bin in each dimension and repeat fit

- Largest excess
 - $M_{\text{reco}} > 250$ MeV/c2, $H_T > 550$ MeV
 - 29 events, 18.03 expected
 - p-value 0.01

- Global p-value takes into account trials factor
 - Excess \sim2 sigma

P-value: Probability that the number of observed events in that range is compatible with the background only hypothesis

Alison Lister, ICHEP2010, 23rd July 2010
The Variables in Data
Limits

- Assume $\text{BR}(t' \rightarrow Wb) \approx 100\%$
- Assume strong SM production ($g \rightarrow t't'\bar{t}\bar{b}$)

Exclude $M(t') < 335 (296) \text{ GeV} @ 95\% \text{ CL at CDF (D0)}$
Conclusions

- Search for 4th generation top-like quark
- No significant excess seen in high H_T, high M_{reco}
 - Largest excess order 2 sigma
 - Seen by both experiments
 - Not going away and not getting larger… most frustrating 😊
- Exclude 4th generation t' with 100\% BR to Wq up to $M(t') < 335$ (296) GeV @ 95\% CL at CDF (D0)
Likelihood Functions

CDF Run 2 (4.6 fb$^{-1}$) - t' Search Likelihoods - Preliminary

- $m(t') = 200$ GeV
- $m(t') = 220$ GeV
- $m(t') = 240$ GeV
- $m(t') = 260$ GeV
- $m(t') = 280$ GeV
- $m(t') = 300$ GeV
- $m(t') = 320$ GeV
- $m(t') = 340$ GeV
- $m(t') = 350$ GeV
- $m(t') = 380$ GeV
- $m(t') = 380$ GeV
- $m(t') = 400$ GeV
- $m(t') = 450$ GeV
- $m(t') = 500$ GeV

(CDF Run 2 (4.6 fb$^{-1}$) - t' Search Likelihoods - Preliminary)
The Variables in Data

D0 Run II preliminary 4.3 fb⁻¹

CDF Run 2 (4.6 fb⁻¹) Preliminary

Events/25 GeV

H_T (GeV)

M_reco (GeV)

difference

Observed

tt
W+jets, EW
QCD

Events/25 GeV

Observed

tt
W+jets, EW
QCD
Previous Results

Limit: $M(t') > 256$ GeV/c2
Limit: $M(t') > 284$ GeV/c2
Limit: $M(t') > 311$ GeV/c2

1118 events
Better QCD model
Better QCD removal cuts
New W+jets modelling