Signature-Based Searches for New Physics Involving Photons at the Tevatron

R. E. Blair
Argonne National Laboratory
Motivation

- As rare phenomenon are observed theorists get ever more creative in devising new possibilities for why
 - why limit ourselves to the current crop of TOE
 - review the exotic signatures and see if anything sticks out
- Photons are a good candidate since they don't add a big mass burden to the event and are reasonably rare
- Cautionary note
 - looking for rare phenomenon sometimes succeeds in finding fluctuations
 - one such fluctuation is the eeγγ missing E_T event described in the 1995 $\bar{P}P$ workshop at FNAL
 - we've been looking for another for 15 years
- Perhaps because of the above event this has been a popular CDF sport
- D0 has a dark photon & GMSB search but nothing that fits this description so all the results here are from CDF
Where might you look?

- Searches described here include
 - $\gamma\gamma$ plus
 - τ
 - e
 - μ
 - Missing E_T
 - γ+jet+b+missing E_T
 - γ+b+missing E_T+lepton (e or μ)
 - this one is of particular interest because it includes $t\bar{t}\gamma$ events

- Numerous as yet unconfirmed theories lead to such signatures
 - SUSY, Technicolor, associated Higgs production...
Diphoton + X searches

- Two triggered photons
 - 2 photon candidates
 - both isolated with $E_T > 12$ GeV
 - no isolation requirement but both with $E_T > 18$ GeV

- Candidate events have:
 - 2 candidates with $E_T > 13$ GeV & $0.05 < |\eta| < 1.05$
 - shower maximum lateral profile consistent with single shower
 - no high P_T tracks pointing at the candidate
 - isolation (track and calorimeter) in a cone of $\Delta\eta, \Delta\phi$ with $R<0.4$
 - calorimeter $0.1X E_T$ for $E_T < 20$ GeV or 2.0 GeV + $0.02X(E_T - 20$ GeV) above 20 GeV
 - track:: 2.0 GeV +0.005 X E_T

- Sample of $\gamma\gamma$ from 2.0 ± 0.1 fb$^{-1}$
 - 31,116 candidates (~30% true diphotons)
 - 42,708 control events with at least one failed γ
γγ plus **τ** results

- **τ** reconstruction using calorimeter and shower max. for **π⁰** plus tracking
 - Mass <1.8 GeV/c²
 - Reconstruction in cone with size dependent on **E_T**
 - \(\theta < 0.17 \) for 30 GeV
 - \(\theta < 0.05 \) for 100 GeV
 - Isolation annulus with outer radius of 0.52
 - Track \(P_T < 1.0 \) GeV
 - \(\pi^0 E_T < 0.6 \) GeV

- 34 events observed in \(2.0 \pm 0.1 \) fb⁻¹
 - Expect \(46 \pm 10 \)
γγ plus τ results

- Fake τ dominates the background (44 out of 46 events)
γγ plus lepton results

- 1.1±0.1 fb⁻¹
- $E_T > 20$ GeV
- SM sources estimated using Madgraph+Pythia for $Z/Wγγ$ K factor of 1.4 for LO->NLO
- Background estimates come from event sample plus rates of jet or e to fake gamma
- Table includes a cut on silicon hits pointing at $γ$ (events plotted don't have this cut which adds 2 such events)

<table>
<thead>
<tr>
<th>Source</th>
<th>electron</th>
<th>muon</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Zγγ$</td>
<td>0.82±0.08</td>
<td>0.50±0.05</td>
</tr>
<tr>
<td>$Wγγ$</td>
<td>0.15±0.02</td>
<td>0.08±0.01</td>
</tr>
<tr>
<td>$lγ+e→γ$</td>
<td>2.26±0.46</td>
<td>0.004±0.004</td>
</tr>
<tr>
<td>$lγ+jet→γ$</td>
<td>0.44±0.26</td>
<td>0.12±0.08</td>
</tr>
<tr>
<td>Fake $l+γγ$</td>
<td>0.12±0.05</td>
<td>0.004±0.004</td>
</tr>
<tr>
<td>Total</td>
<td>3.79±0.54</td>
<td>0.71±0.10</td>
</tr>
<tr>
<td>Observed</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
\(\gamma \gamma \) plus electron results

![Graphs showing results of \(\gamma \gamma \) and electron data]

Robert Blair, ANL

24/7/2010
Expected muon distributions
\[\gamma \gamma \text{ plus } E_T \]

- Missing \(E_T \) modeled using detailed understanding of jet resolution and underlying event contribution
 - Significance constructed to estimate log likelihood of a given event missing \(E_T \)

- Several other sources estimated
 - Incorrect vertex
 - Other vertices considered and if one produces less missing \(E_T \) it is used instead
 - Leaves cases where other vertex is not reconstructed (this contribution is estimated)
 - Three gamma events with a missing gamma (this is estimated from the data)
 - Non collision events (cosmic rays) TDC's used to estimate this
$\gamma \gamma$ plus missing E_T
\(\gamma \gamma \) plus missing \(E_T \)

<table>
<thead>
<tr>
<th></th>
<th>signif.>3</th>
<th>signif.>4</th>
<th>signif.>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>EWK</td>
<td>35.4±2.2</td>
<td>29.9±2.0</td>
<td>25.9±1.9</td>
</tr>
<tr>
<td>Total exp.</td>
<td>71.7±7.5</td>
<td>39.0±3.1</td>
<td>30.4±2.4</td>
</tr>
<tr>
<td>Observed</td>
<td>82</td>
<td>31</td>
<td>23</td>
</tr>
</tbody>
</table>
\[\gamma + \text{jet} + b + \text{missing } E_T \]

PRD 80, 052003 (2009)

- Photon candidate with \(E_T > 25 \text{ GeV} \) and \(|\eta|<1.1\)
- Two jets with \(E_T > 15 \text{ GeV} \) and \(|\eta|<2.0\)
- \(\Delta R>0.4 \) for all of the above (\(\gamma \) and jets)
- Missing \(E_T > 25 \text{ GeV} \)
- \(\Delta \phi(\text{jet and met})>0.3 \)
- 1 SECondary VerTeX (SECVTX) b tag
 - 617 events satisfy above
 - Expect 607 ± 74(stat.) ± 86(syst.)
 - This includes 115 ± 49 ± 54 fake \(\gamma \) and 141 ± 6 ± 30 true \(\gamma \) fake b
 - \(\gamma \) b \((341±18±91)\) dominates
- Veto events with track (\(P_T > 20 \text{ GeV} \)) carrying > 90% track \(\Sigma P_T \) in \(\Delta R<0.4 \)
 - 17 events eliminated by this cut
- 600 events satisfy all cuts in 2.0 fb\(^{-1}\) sample
$\gamma + \text{jet} + b + \text{missing } E_T$
$\gamma + b + \text{missing } E_T + \text{lepton (e or } \mu \text{)}$

PRD 80, 011102(R) (2009)

- $\gamma + b + \text{missing } E_T + \text{lepton (e or } \mu \text{)} \ 1.9 \text{ fb}^{-1} \ (\text{trigger on high } P_T \text{ lepton})$
 - Central photon with $E_T > 10 \text{ GeV}$
 - B tagged jet with $E_T > 15 \text{ GeV}$
 - Missing $E_T > 20 \text{ GeV}$
 - e or μ with $E_T > 20 \text{ GeV}$

- 28 events observed
 - Expect $31.0 (+4.1 - 3.9)$
 - Dominated by jets faking γ and mistagged b jets ($7.58 \pm 3.11 \ & \ 7.65 \pm 0.70$ respectively)
 - Top plus gamma come in next (semileptonic: 3.58 ± 0.65 & dilepton: 2.32 ± 0.41)

- Subsample rich in $t\bar{t}\gamma$
 - require $H_T > 200 \text{ GeV}$
 - require $N_{\text{jets}} \geq 3$
$\gamma + b + \text{missing } E_T + \text{lepton (e or } \mu)$

<table>
<thead>
<tr>
<th>SM Source</th>
<th>$e\gamma b E_T$</th>
<th>$\mu\gamma b E_T$</th>
<th>$(e + \mu)\gamma b E_T$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$tt\gamma$ semileptonic</td>
<td>2.06 ± 0.38</td>
<td>1.52 ± 0.28</td>
<td>3.58 ± 0.65</td>
</tr>
<tr>
<td>$tt\gamma$ dileptonic</td>
<td>1.30 ± 0.23</td>
<td>1.02 ± 0.18</td>
<td>2.32 ± 0.41</td>
</tr>
<tr>
<td>$W^{\pm} c\gamma$</td>
<td>0.75 ± 0.16</td>
<td>0.72 ± 0.15</td>
<td>1.47 ± 0.26</td>
</tr>
<tr>
<td>$W^{\pm} c\gamma$</td>
<td>0.08 ± 0.04</td>
<td>0.22 ± 0.06</td>
<td>0.30 ± 0.08</td>
</tr>
<tr>
<td>$W^{\pm} bb\gamma$</td>
<td>0.62 ± 0.11</td>
<td>0.42 ± 0.08</td>
<td>1.04 ± 0.17</td>
</tr>
<tr>
<td>$Z(\tau\tau)\gamma$</td>
<td>0.13 ± 0.09</td>
<td>0.11 ± 0.08</td>
<td>0.24 ± 0.12</td>
</tr>
<tr>
<td>WZ</td>
<td>0.08 ± 0.04</td>
<td>0.01 ± 0.01</td>
<td>0.09 ± 0.04</td>
</tr>
<tr>
<td>$\tau \rightarrow \gamma$ fake</td>
<td>0.12 ± 0.01</td>
<td>0.10 ± 0.01</td>
<td>0.22 ± 0.01</td>
</tr>
<tr>
<td>Jet faking γ</td>
<td>4.56 ± 1.92</td>
<td>3.02 ± 1.19</td>
<td>7.58 ± 3.11</td>
</tr>
<tr>
<td>Mistags</td>
<td>4.11 ± 0.41</td>
<td>3.54 ± 0.37</td>
<td>7.65 ± 0.70</td>
</tr>
<tr>
<td>QCD</td>
<td>1.49 ± 0.77</td>
<td>0^{+1}_{-0}</td>
<td>$1.49^{+1.30}_{-0.77}$</td>
</tr>
<tr>
<td>$e\gamma E_T b, e \rightarrow \gamma$</td>
<td>1.50 ± 0.28</td>
<td>0.45 ± 0.10</td>
<td>1.50 ± 0.28</td>
</tr>
<tr>
<td>$\mu e E_T b, e \rightarrow \gamma$</td>
<td>$-\gamma$</td>
<td>$-\gamma$</td>
<td>$-\gamma$</td>
</tr>
</tbody>
</table>

| Predicted | 16.8 ± 2.2 (tot) | $11.1^{+1.7}_{-1.4}$ (tot) | $27.9^{+3.6}_{-3.5}$ (tot) |
| Observed | 16 | 12 | 28 |
$\gamma + b + \text{missing } E_T + \text{lepton (e or } \mu \text{)}$
Require $H_T > 200$ GeV and $N_{jets} > 2$

16 events with ~ 4 expected top plus gamma (11.2+2.3-2.1 expected total)
\[\gamma + b + \text{missing } E_T + \text{lepton (e or } \mu) \]

- Subtracting non-top sources yields \(0.15 \pm 0.08 \text{pb} \) for \(t\bar{t}_\gamma\)
Conclusion

- No surprises so far.
- Tevatron physics is going strong!
 - Sensitive to processes that are two orders of magnitude rarer than top production
 - Lots more data to come