Searches for Gauge Mediated Supersymmetry at the Tevatron

Pierre Lutz (IN2P3/LAL and IRFU/SPP) on behalf of CDF and D0 collaborations

Covered analyses

CDF: PRL 104 (2010) 011801 with 2.6 fb⁻¹ Limits on GMSB Models using Diphoton events with MET at CDFII D0: conference note to be submitted with 6.3 fb⁻¹ (not only GMSB, also UED) Search for new physics in diphoton events with large MET using 6.3 fb⁻¹ of data from ppbar collisions at 1.96 TeV Both are « searches in yy+MET events » Not only increase in stat., but improved analyses.

Gauge-Mediated SUSY Breaking

SUSY breaking energy scale : A~100 TeV
Squarks, gluinos, sleptons are heavy
Gravitino is LSP (0.5 - 1.5 keV)
Phenomenology driven by NLSP nature
If χ^0 NLSP : $\chi_1^0 \to \tilde{G}\gamma$ R-parity conserved : $\gamma\gamma$ +MET as final state

Minimal GMSB (N_{mes}=1,SPS8)

insure χ° NLSP

SPS8 GMSB SUSY NLO (Prospino 2.1)

only 5 parameters !

primary production modes

example decay chain

Pierre Lutz

Event selection summary

Select di-photon events common to both, emphasize only DO improvement with a NN improvements Find the event vertex EM pointing (DO) EM timing (CDF) Cuts to reduce instrumental MET sources CDF improvement with MET model

Photon identification

An improved photon identification achieved by using a neural network, with 5 input variables, describing the shape and isolation of the shower, discriminant between true γ and misidentified jets.

for same eff. ~2 improvement in rejection, allowing improved formulation of bkgd model 24/07/2010 Pierre Lutz

from PLB 690 (2010) 108

6

Vertexing

- Wrong vertex = wrong MET!
- CDF: uses the photon timing system to reject most of cosmics induced diphoton and beam-halo events.
- D0 makes use of the preshower to check if both photons are pointing near the primary vertex (event is removed if not)
 Consequence : only ~prompt decays of χ° can be considered (for both CDF and D0)

MET Model

significance computed from the p-value to see fluctuations in the energy measurement to produce a MET greater or equal to the observed one

Fake MET has low significance. Note the exponential behaviour for fake MET

Backgrounds

Instrumental, with no inherent MET

- 1. SM $\gamma\gamma$ (40%) due to γ mismeasurement
- 2. γ+jets (jet faking a photon)
- Genuine MET
- 1. $W\gamma$, W-jet, arising from a missed e track
- 2. $W/Z+\gamma\gamma$ (real MET coming from vs)
- All are measured from data control samples (but small W/Z+yy from MC)

Data Control samples

From variations of the track veto and NN, form data control samples to estimate background contributions to the $\gamma\gamma$ sample

24/07/2010

MET modeling

MET shape:

- 1. In SM $\gamma\gamma$: modeled with Z \rightarrow ee data sample, cross cheked with SM $\gamma\gamma$ MC (used as systematics)
- 2. In mis-identifed jet events : modeled with jet misID DATA sample (at least one $\ll \gamma \gg$ failing NN)
- Normalization : on MET<10 GeV, by fitting the SM γγ and misID jet relative contributions.
- Electron misID contribution is derived from the eγ sample. Differences can be attributed to Wγ and W+jet processes

24/07/2010

Background estimation developed with Run IIb $\gamma\gamma$ sample data blinded in the MET > 50 GeV region.

Complete elec misID prediction

Difference between $e\gamma$ data and instr. MET with the croos check from $W\gamma$ and W+jet

This difference, when multiplied by the e -> γ fake rate, constitutes the ele misID contribution to the diphoton MET

24/07/2010

Pierre Lutz

Systematic Uncertainties

similar for both analyses Associated with bkgrnds estimated from data YY MET shape Jet misID MET shape Rel. normalisations Overall norm. from uncertainty in e faking γ rate

Associated with contributions estimated from MC Luminosity (6.1%) Single EM trigger efficiency (2%) Photon ID eff. (3%) Data/MC CPS-PV (3%) PDFs (5% for GMSB)

24/07/2010

Results (1)

Background Source	Expected Rate \pm Stat \pm Sys
Electroweak	$0.77 {\pm} 0.21 {\pm} 0.22$
QCD	$0.46{\pm}0.22{\pm}0.10$
Non-Collision	$0.001^{+0.008}_{-0.001}\pm0.001$
Total	$1.23{\pm}0.30{\pm}0.24$

Data : no event observed

 χ° mass > 149 GeV/c² (95% CL)

24/07/2010

Results (2)

Limits : Λ<124 TeV excluded (95% CL) χ° mass > 175 GeV/c² (95% CL)

Observed MET consistent with SM

Conclusions

CDF and DO performed a search for GMSB in the $\gamma\gamma$ +MET final state Used improved methods to remove instrumental and SM backgrounds • $\gamma\gamma$ sample MET distribution consistent with SM prediction Using 6.3 fb⁻¹ of data, DO sets the most stringent limit on SPS8 slope to date : • $\Lambda > 124 \text{ TeV} @ 95\% CL (or <math>\chi^{\circ} > 175 \text{ GeV})$

Backup slides

24/07/2010

D0 preshower

The expected 95% CL cross section limit as a function of the 3 final variables for an example point $m\chi^{\circ} = 140$

The N_1 predicted kinematic distributions after the optimized requirements (right)

The W/Z+yy processes

Rare SM $\gamma\gamma$ +MET estimated from MC (Baur for CDF, MADGRAPH for DO)

Expected number of evts for all **MET** values (inclusive decay modes)

UED interpretation

4+N dim. space, compactification radius R, and gravitational interactions violating KK parity

LKP (the KK photon γ^* decays gravitationally to $G\gamma$

Thus the same final state !

R-1 > 477 GeV @ 95%CL