Heavy flavour and Quarkonium measurements with ALICE at LHC

Javier Castillo
for the
ALICE Collaboration
Outline

• Physics motivations
• ALICE experiment
• ALICE capabilities
 – Open heavy flavour
 – Quarkonia
• First results from 7 TeV p-p collisions
• Conclusions

• Disclaimer:
 – muon spectrometer biased
 – other heavy flavour results in
 • G. Bruno, session 05 - 22/7
 • A. Grelli, session 05 - 22/7
 • R. Bailhache, session 05 - poster
Heavy flavours

• In Pb-Pb collisions: probe the properties of the medium
 – created in the hard initial collisions
 • experience the whole collision history
 – possible comparison heavy quarks/light partons
 • energy loss:

\[\Delta E_g > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b \]

\[R^H_{AA}(p_t) = \frac{1}{N_{coll}} \frac{dN^H_{AA}}{dN^H_{pp}} \left(\frac{dp_t}{dp_t} \right) \]

medium density and size

\[R^{\pi}_{AA} < R^D_{AA} < R^B_{AA} \]

dead cone effect (mass)
Casimir factor (colour charge)

• In p-p collisions:
 – baseline for Pb-Pb
 – measure charm and beauty cross section
 – compare to pQCD predictions
Quarkonia, heavy ions and the QGP?

- A long lasting story...
 - 1986, Matsui and Satz: J/ψ suppression as a QGP signature
 - NA38, NA50, NA60 at SPS
 - PHENIX, STAR at RHIC
- ... and many open questions
 - similar suppression at RHIC and at SPS
 - larger suppression at larger rapidities
 - cold nuclear matter effect (still) weakly constrained
 - statistical hadronization, recombination?

... and then??
The LHC might enlighten us ...
The LHC and its features

• Large energy step (RHIC x30)
 – A QGP that will be
 • hotter,
 • bigger,
 • longer lived,
 • earlier thermalized.
 – Large hard probe production cross-sections

<table>
<thead>
<tr>
<th></th>
<th>SPS 17 GeV</th>
<th>RHIC 200 GeV</th>
<th>LHC 5.5 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial T</td>
<td>~ 200 MeV</td>
<td>~ 300 MeV</td>
<td>> 600 MeV</td>
</tr>
<tr>
<td>volume</td>
<td>10^3 fm3</td>
<td>10^4 fm3</td>
<td>10^5 fm3</td>
</tr>
<tr>
<td>lifetime</td>
<td>< 2 fm/c</td>
<td>2-4 fm/c</td>
<td>> 10 fm/c</td>
</tr>
</tbody>
</table>

Event rate at $L=10^{27}$ cm$^{-2}$s$^{-1}$

<table>
<thead>
<tr>
<th></th>
<th>SPS PbPb Cent</th>
<th>RHIC AuAu Cent</th>
<th>LHC pp</th>
<th>LHC pPb</th>
<th>LHC PbPb Cent</th>
</tr>
</thead>
<tbody>
<tr>
<td>cc</td>
<td>0.2</td>
<td>10</td>
<td>0.2</td>
<td>1</td>
<td>115</td>
</tr>
<tr>
<td>bb</td>
<td>-</td>
<td>0.05</td>
<td>0.007</td>
<td>0.03</td>
<td>5</td>
</tr>
</tbody>
</table>
• Central barrel (|\eta|<0.9)
 – Open heavy flavour
 • hadronic channel
 • semi-leptonic decays (e)
 – Quarkonia
 • e^+e^-

• Muon spectrometer (-4.0<\eta<-2.5)
 – Open heavy flavour
 • semi-leptonic decays (\mu)
 – Quarkonia
 • \mu^+\mu^-

Tracking:
 ITS+TPC+TRD
 PID: TPC+TRD+TOF
Secondary vertexing:
 ITS

Absorber
 Tracking chambers
 MUON Trigger

ZDC
\sim 116m from I.P.
Heavy flavour measurement potential

Comparison with pQCD

Energy loss studies

\[R_{D/h}(p_t) = \frac{R^D_{AA}(p_t)}{R^h_{AA}(p_t)} \]

(from simulation) MC

\[R_{B/D}(p_t) = \frac{R^e_{\text{from } B}(p_t)}{R^e_{\text{from } D}(p_t)} \]

Good discriminating power!
Muons from charm at forward rapidity

- Unfold single muon p_t and dimuon invariant mass spectra
- No dca cuts \rightarrow use large statistics to constrain the fits

pp, single muon p_t

pp, di-muon invariant mass

1 month at reduced luminosity (10^{30} cm$^{-2}$s$^{-1}$, 7 x 10^{10} pp events)
Secondary J/ψ

- X_c: contribution $\sim 30\%$
 - $X_c \rightarrow \text{J/ψ+γ}$
 - J/ψ in dielectron channel
 - γ in γ-conversion
 - feasible in pp collisions
 - $\sim 7k$ X_c but requires a trigger strategy which is under study

- ψ': contribution $\sim 10\%$
 - challenging

- B mesons: contribution $\sim 20\%$
 - $B \rightarrow \text{J/ψ+X}$
 - Non photonic electrons
 - à la CDF: simultaneous fit
 - Invariant mass distribution
 - Pseudo proper decay time
 - In muon arm
 - method using 3 muon events is under study

ICHEP2010 – Paris, France – 22/10/2010
Quarkonia: what could be achieved

- Upsilon measurements
 - Separation of family states is possible (100 MeV resolution)
 - Good sensitivity to “suppression” scenarii
 - Suppression 1: $T_C = 270$ MeV; $T_D/T_C = 4.0$ (1.4) for $\Upsilon(\Upsilon')$;
 - Suppression 2: $T_C = 190$ MeV; $T_D/T_C = 2.9$ (1.1) for $\Upsilon(\Upsilon')$;

- Polarization
 - Angular distribution of μ^+ in the quarkonium rest frame.
 - $\frac{d\sigma}{d\cos\theta_H} \propto 1 + \alpha \cos^2 \theta_H$
 - $\alpha = \frac{\sigma_T - 2\sigma_L}{\sigma_T + 2\sigma_L} \Rightarrow \begin{cases} 1 & \text{transverse} \\ 0 & \text{no polarization} \\ -1 & \text{longitudinal} \end{cases}$
 - Υ polarization
 - 1 nominal year for integrated studies
 - Several years for differentials
First results from 7 TeV p-p collisions

- **CINT1B**: interaction trigger
 - at least one charged particle in 8 η units
- **CMUS1B**: single-muon trigger:
 - forward muon in coincidence with interaction trigger

Further background-event rejection is performed offline by selecting events which:
1. have the correct event type (physics);
2. trigger on bunch crossings;
3. fulfill at least -one- of the three following conditions:
 a) 2 fired chips in the SPD*
 b) 1 fired chip in the SPD* and a beam-beam flag in either V0A or V0C**
 c) beam-beam flags on both sides V0A and V0C**;
4. are not flagged as beam-gas by either V0A or V0C**.

* calculated offline from reconstructed clusters
** calculated offline from the V0 signals
Open heavy flavour: D mesons

Expected to cover 0.5 < p_T < 15 GeV/c with 10^9 events

Observed differentially in p_T:
- up to p_T = 12 GeV/c
- down to 1 GeV/c for D0

See A. Grelli
Session 05 – 24/7
Open heavy flavour in the electron channel

- Compute the inclusive cross section using electrons
- For high p_T, the contribution from charm and beauty becomes dominant
- Essential ingredient for the analysis: electron Identification
 - For the moment: TPC + TOF
 - Hard work to add the TRD is going on!
 - EMCal will also contribute

See R. Bailhache
Session 05 – Poster
J/ψ in the di-electron channel

- 110M p-p events at 7 TeV
 - 1/3 of available statistics
- Track reconstruction
 - TPC + ITS
- Electron identification (and pion rejection)
 - TPC
 - TRD could be included later
- Fit with a Cristal Ball function
- $|\eta|<0.9$

\[\text{Counts} \left[\frac{\text{iMeV/c}^2}{\text{MeV/c}^2} \right] \]

\[N_{\text{signal}} = 59 \pm 9 \]

\[\text{Significance} = 6.72 \pm 1.14 \]

\[S/B = 3.22 \pm 1.62 \]

\[\text{Mass} = 3.076 \pm 0.009 \text{ GeV/c}^2 \]

\[\text{width} = 51 \pm 10 \text{ MeV/c}^2 \]

See G. Bruno
Session 05 – 22/7
Measurements with the forward muon spectrometer
Open heavy flavour from single muons

- **Trigger matching**
 - Iron wall stop hadrons produced in the absorbers

- **Distance of Closest Approach**
 - Could be used to separate c and b signal from π and K background (using simulations)

- π and K contribution
 - subtracted using Pythia simulations normalized at low p_T

- c and b contribution
 - dominates for $p_T>2$ GeV/c

Graph:
- $p+p @ \sqrt{s}=7$ TeV
- ALICE Performance
- $07/06/2010$

Data:
- $pp @ \sqrt{s}=7$ TeV
- MB data w/ $-4<\eta<-2.5$
- $17.6 \text{ cm}<r_{abs}<80 \text{ cm}$
- ALICE Performance
- $09/06/2010$
J/ψ in the di-muon channel

The alignment of the tracking chambers is a critical step for the J/ψ measurements

- First alignment: straight tracks from B=0 T data

\[\sigma_{J/\psi} = 91 \pm 9 \text{ MeV} \]

\[\sigma_{J/\psi} = 232 \pm 50 \text{ MeV} \]

Without alignment

First alignment

Target

\[\sigma_{J/\psi} (\text{MeV}) \]

- Without alignment: 230
- First alignment: 90
- Target: 70
Transverse momentum dependence

The width of the J/ψ peak is well reproduced by our Monte Carlo including residual misalignment and other realistic conditions!
Monte Carlo comparison

The acceptance and efficiency corrected distributions are compared to generated MC distribution.

- “CDF pp 7 TeV” parameterization
 - p_T extrapolated from CDF results
 - y obtained from CEM calculations
 - No polarization ($\lambda = 0$)
To extract $<p_T^2>$ we use the fit function first proposed by Yoh et al., PRL 41 (1978) 684 and also used by previous experiments.

\[\frac{dN}{dp_T} \propto p_T \times \left(1 + \left(\frac{p_T}{p_0} \right)^2 \right)^x \]

\[x = 3.2 \pm 0.7 \]

Quoted uncertainties include systematics from the fit function.

Full systematic uncertainties are being evaluated.
Conclusion

- The LHC provides a new and promising environment for the study of open heavy flavour and quarkonium production
- ALICE is well suited for the study of heavy flavours
 - Two rapidity domains

- Exciting results from first pp data at 7 TeV
 - J/ψ transverse momentum distribution

- Coming soon
 - J/ψ differential cross-section
 - Corrected open heavy flavour measurements

- Looking forward for Pb-Pb data at the end of the year
The LHC and its other “features”

• Only 1 month per year for the heavy ion program
 – Including pA or lighter ions

• Lead beam luminosity is limited by the magnets “quench limit” due to EM processes induced by PbPb collisions;

• Large contribution from B-hadron decays to charmonia yields
 – ~20% for J/ψ

• Cold nuclear matter effects are not well under control
 – Could try different normalizations
 – Will be measured with pA runs

• Heavy Ion running plan (1 month per year)
 – First 5 years: 1 PbPb low luminosity, 2 PbPb runs at nominal luminosity, 1 pPb and 1 lighter ion runs
 – Next 5 years (based on results): lower energies, pp at 5.5 TeV, other AA or pA, more stat …
Quarkonia in dielectron channel

<table>
<thead>
<tr>
<th></th>
<th>J/ψ</th>
<th>Υ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass resolution</td>
<td>~ 30 MeV/c2</td>
<td>~ 90 MeV/c2</td>
</tr>
<tr>
<td>Signal/Noise</td>
<td>1.2</td>
<td>1.0</td>
</tr>
<tr>
<td>Counts (nominal PbPb year) 10%</td>
<td>120k</td>
<td>900</td>
</tr>
</tbody>
</table>
Quarkonia in dimuon channel

<table>
<thead>
<tr>
<th>&</th>
<th>J/ψ</th>
<th>Υ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass resolution</td>
<td>~70 MeV/c²</td>
<td>~100 MeV/c²</td>
</tr>
<tr>
<td>Signal/Noise</td>
<td>0.3</td>
<td>2.5</td>
</tr>
<tr>
<td>Counts (nominal PbPb year) MB</td>
<td>680k</td>
<td>6000</td>
</tr>
</tbody>
</table>
ALICE performances in $\mu^+\mu^-$

0<b<3 fm

<table>
<thead>
<tr>
<th>State</th>
<th>$S[10^3]$</th>
<th>S/B</th>
<th>$S/(S+B)^{1/2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>J/Ψ</td>
<td>130</td>
<td>0.20</td>
<td>150</td>
</tr>
<tr>
<td>Ψ'</td>
<td>3.7</td>
<td>0.01</td>
<td>6.7</td>
</tr>
<tr>
<td>$\gamma(1S)$</td>
<td>1.3</td>
<td>1.7</td>
<td>29</td>
</tr>
<tr>
<td>$\gamma(2S)$</td>
<td>0.35</td>
<td>0.68</td>
<td>13</td>
</tr>
<tr>
<td>$\gamma(3S)$</td>
<td>0.20</td>
<td>0.48</td>
<td>8.1</td>
</tr>
</tbody>
</table>

6<b<9 fm

<table>
<thead>
<tr>
<th>State</th>
<th>$S[10^3]$</th>
<th>S/B</th>
<th>$S/(S+B)^{1/2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>J/Ψ</td>
<td>200</td>
<td>0.49</td>
<td>250</td>
</tr>
<tr>
<td>Ψ'</td>
<td>5.5</td>
<td>0.03</td>
<td>13</td>
</tr>
<tr>
<td>$\gamma(1S)$</td>
<td>2.0</td>
<td>3.6</td>
<td>39</td>
</tr>
<tr>
<td>$\gamma(2S)$</td>
<td>0.52</td>
<td>1.4</td>
<td>18</td>
</tr>
<tr>
<td>$\gamma(3S)$</td>
<td>0.28</td>
<td>0.95</td>
<td>12</td>
</tr>
</tbody>
</table>

b>12 fm

<table>
<thead>
<tr>
<th>State</th>
<th>$S[10^3]$</th>
<th>S/B</th>
<th>$S/(S+B)^{1/2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>J/Ψ</td>
<td>22</td>
<td>3.14</td>
<td>130</td>
</tr>
<tr>
<td>Ψ'</td>
<td>0.6</td>
<td>0.18</td>
<td>9.7</td>
</tr>
<tr>
<td>$\gamma(1S)$</td>
<td>0.21</td>
<td>9.5</td>
<td>15</td>
</tr>
<tr>
<td>$\gamma(2S)$</td>
<td>0.06</td>
<td>3.6</td>
<td>6.5</td>
</tr>
<tr>
<td>$\gamma(3S)$</td>
<td>0.03</td>
<td>1.9</td>
<td>4.2</td>
</tr>
</tbody>
</table>
Quarkonia: what will be done

• The bread and butter of J/ψ
 – Production yields, cross-sections
 • High statistics
 • From $p_T = 0$ GeV/c
 – Detailed “suppression” studies
 • With respect to
 – Beauty
 – pp (R_{AA})
 • As a function of
 – Centrality
 – Transverse momentum (0-20 GeV/c)
 – Rapidity (two domains)
 – Precise pp measurement
 • 3.10^6 J/ψ in nominal pp run
 • Sensitivity to low x-Bjorken
 – probing gluon distribution at $x_{Bj} = 2x10^{-4} – 4x10^{-6}$;
Particle Identification

Complementary momentum coverage

TPC

ITS

TOF

ALICE Performance
p+p at $\sqrt{s} = 900$ GeV (2009 data)

ALICE performance
work in progress

pp @ 7 TeV

Complementary momentum coverage
D⁰ Invariant Mass Spectra in p_T bins

pp \sqrt{s} = 7 TeV, 1.4 \times 10^8 events, 1 < p_T^{D^0} < 2 GeV/c

pp \sqrt{s} = 7 TeV, 1.4 \times 10^8 events, 2 < p_T^{D^0} < 3 GeV/c

pp \sqrt{s} = 7 TeV, 1.4 \times 10^8 events, 3 < p_T^{D^0} < 5 GeV/c

pp \sqrt{s} = 7 TeV, 1.4 \times 10^8 events, 5 < p_T^{D^0} < 8 GeV/c

pp \sqrt{s} = 7 TeV, 1.4 \times 10^8 events, 8 < p_T^{D^0} < 12 GeV/c
D\(^+\) Invariant Mass Spectra in p\(_T\) bins

pp\(\sqrt{s}=7\) TeV, 1.41 \times 10^8 events, 2 < p\(_T\) < 3 GeV/c

D\(^+\) \rightarrow K^- \pi^+ \pi^+

ALICE Performance
13/07/2010

Mean = 1.870 ± 0.002
Sigma = 0.010 ± 0.001

Significance(2\(\sigma\)) 7.2 ± 1.0
S(2\(\sigma\)) 66 ± 9
B(2\(\sigma\)) 19 ± 2

pp\(\sqrt{s}=7\) TeV, 1.41 \times 10^8 events, 3 < p\(_T\) < 5 GeV/c

D\(^+\) \rightarrow K^- \pi^+ \pi^+

ALICE Performance
13/07/2010

Mean = 1.868 ± 0.001
Sigma = 0.011 ± 0.001

Significance(2\(\sigma\)) 11.5 ± 1.1
S(2\(\sigma\)) 180 ± 15
B(2\(\sigma\)) 63 ± 3

pp\(\sqrt{s}=7\) TeV, 1.41 \times 10^8 events, 5 < p\(_T\) < 8 GeV/c

D\(^+\) \rightarrow K^- \pi^+ \pi^+

ALICE Performance
13/07/2010

Mean = 1.871 ± 0.002
Sigma = 0.014 ± 0.001

Significance(2\(\sigma\)) 10.4 ± 1.1
S(2\(\sigma\)) 160 ± 16
B(2\(\sigma\)) 74 ± 4

pp\(\sqrt{s}=7\) TeV, 1.41 \times 10^8 events, 8 < p\(_T\) < 12 GeV/c

D\(^+\) \rightarrow K^- \pi^+ \pi^+

ALICE Performance
13/07/2010

Mean = 1.870 ± 0.004
Sigma = 0.022 ± 0.003

Significance(2\(\sigma\)) 6.9 ± 1.2
S(2\(\sigma\)) 103 ± 16
B(2\(\sigma\)) 118 ± 7
D* Invariant Mass Spectra in p_T bins

pp\sqrt{s} = 7 TeV, 1.40 \times 10^8 events, 2 < p_T < 3 GeV/c

- **ALICE performance**
- **15/07/2010**
- **Significance = 4.7 ± 1.4**
- **S = 55 ± 7**
- **B = 85 ± 9**
- **Mean = (145.25 ± 0.15) MeV/c²**
- **Sigma = (436 ± 184) keV/c²**

pp\sqrt{s} = 7 TeV, 1.40 \times 10^8 events, 3 < p_T < 5 GeV/c

- **Significance = 11.4 ± 2.3**
- **S = 218 ± 15**
- **B = 198 ± 12**
- **Mean = (145.41 ± 0.07) MeV/c²**
- **Sigma = (688 ± 86) keV/c²**

pp\sqrt{s} = 7 TeV, 1.40 \times 10^8 events, 5 < p_T < 8 GeV/c

- **Significance = 16.8 ± 2.4**
- **S = 260 ± 16**
- **B = 76 ± 9**
- **Mean = (145.54 ± 0.05) MeV/c²**
- **Sigma = (548 ± 37) keV/c²**

pp\sqrt{s} = 7 TeV, 1.40 \times 10^8 events, 8 < p_T < 12 GeV/c

- **Significance = 8.5 ± 2.5**
- **S = 84 ± 9**
- **B = 12 ± 4**
- **Mean = (145.37 ± 0.08) MeV/c²**
- **Sigma = (659 ± 82) keV/c²**

pp\sqrt{s} = 7 TeV, 1.40 \times 10^8 events, 12 < p_T < 18 GeV/c

- **Significance = 4.2 ± 1.9**
- **S = 22 ± 5**
- **B = 5 ± 2**
- **Mean = (145.6 ± 0.1) MeV/c²**
- **Sigma = (499 ± 115) keV/c²**