Status of Higher Order QCD Calculations

Aude Gehrmann-De Ridder
QCD at High Energy Colliders

- QCD: successful theory of strong interactions
- QCD is omnipresent in high energy collisions

QCD effects
- initial state: parton distributions
- final state: jets
- hard scattering matrix elements with multiple radiation

Detailed understanding of QCD mandatory for
- Interpretation of collider data
- Precision studies
- Searches for new physics
Expectations at LHC

- LHC brings new frontiers in energy and luminosity
- Production of short-lived heavy states (Higgs, SUSY, ...)
 - detected through their decay products
 - yield multi-particle final states involving jets, leptons, γ, \slashed{E}_T
- Search for new effects in multi-particle final states
 - typically involving jets
 - need to understand signal and background processes
- Require precise predictions: NLO

Example: SUSY signature:
$3j + \slashed{E}_T$
Large production rates for Standard Model processes
- jets
- top quark pairs
- vector bosons
Allow precision measurements
- masses
- couplings
- parton distributions
Require precise theory: NNLO
Outline

- Multiparticle production at NLO
- Precision observables at NNLO
NLO Multiparticle Production

- Why NLO?
 - reduce uncertainty of theory prediction
 - reliable normalization and shape
 - accounts for effects of extra radiation
 - jet algorithm dependence

- Require two principal ingredients (here: pp → 3j)
 - one-loop matrix elements
 - explicit infrared poles from loop integral
 - known for all 2 → 2 processes
 - known for many 2 → 3 processes
 - current frontier 2 → 4: major challenge
 - tree-level matrix elements
 - implicit poles from soft/collinear emission
Combining virtual and real emission
 - extract process-independent implicit poles from real emission
 - residue subtraction (S. Frixione, Z. Kunszt, A. Signer)
 - dipole subtraction (S. Catani, S. Dittmaier, M. Seymour, Z. Trocsanyi)
 - antenna subtraction
 (D. Kosower; J. Campbell, M. Cullen, E.W.N. Glover; A. Daleo, T. Gehrmann, D. Maitre, M. Ritzmann, AG)

Automated subtraction tools
 - residue method: MadFKS (R. Frederix, S. Frixione, F. Maltoni, T. Stelzer)

Bottleneck up to now: one-loop multileg matrix elements
NLO: One-loop multi-leg amplitudes

- General structure

\[A = \sum_i d_i \text{Box}_i + \sum_i c_i \text{Triangle}_i + \sum_i b_i \text{Bubble}_i + \sum_i a_i \text{Tadpole}_i + R \]

- One-loop scalar integrals known analytically
 (K. Ellis, G. Zanderighi; A. Denner, S. Dittmaier)

- Task: compute integral coefficients

- Challenges
 - complexity: number of diagrams, number of scales
 - stability: linear dependence among external momenta

- Enormous progress using two approaches
 - traditional: Feynman diagram based
 - unitarity based: reconstruct integral coefficients from cuts

Status of Higher Order QCD Calculations ICHEP 2010
NLO multi-leg: traditional approach

- Based on one-loop Feynman diagrams
 - contain high-rank tensor integrals
 - reduced to basis integrals: with analytical (A. Denner, S. Dittmaier) or semi-numerical (GOLEM: T. Binoth, J.P. Guillet, G. Heinrich, E. Pilon, C. Schubert) approach

- Successfully applied in first complete $2 \rightarrow 4$ calculation:
 $$ pp \rightarrow t\bar{t}bb $$
 (A. Bredenstein, A. Denner, S. Dittmaier, S. Pozzorini)
 see talk by S. Dittmaier

- and in many $2 \rightarrow 3$ processes
NLO multi-leg: unitarity-based method

- **Generalized unitarity**
 - apply multi-particle cuts: one or more loop propagators on-shell (Z. Bern, L. Dixon, D. Dunbar, D. Kosower, R. Britto, F. Cachazo, B. Feng; P. Mastrolia; D. Forde)
 - result: integral coefficients are products of tree-level amplitudes evaluated at complex momenta

- **Reduction at integrand level** (OPP: G. Ossola, C. Papadopoulos, R. Pittau)

- **Rational terms not determined by unitarity**
 - Special recursion relations (C. Berger et al.)
 - Feynman diagram approach (OPP)
 - D-dimensional unitarity (R. Ellis, W. Giele, Z. Kunszt, K. Melnikov)

- **Algorithmic procedure: can be automated**
Automating NLO calculations

- Virtual corrections: implementations
 - semi-numerical form factor decomposition: GOLEM
 (T. Binoth, J.P. Guillet, G. Heinrich, E. Pilon, T. Reiter)

- unitarity and multi-particle cuts: BlackHat

- reduction at integrand level: CutTools (G. Ossola, C. Papadopoulos, R. Pittau)

- generalized D-dimensional unitarity: Rocket (W. Giele, G. Zanderighi)

- generalized D-dimensional unitarity: Samurai
 (P. Mastrolia, G. Ossola, T. Reiter, F. Tranmontano)

- several more packages in progress
 (A. Lazopoulos; W. Giele, Z. Kunszt, J. Winter; K. Melnikov, M. Schulze)
The Les Houches Wish List (2010)

<table>
<thead>
<tr>
<th>process wanted at NLO</th>
<th>background to</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (pp \rightarrow VV + \text{ jet})</td>
<td>(t\bar{t}H), new physics</td>
</tr>
<tr>
<td></td>
<td>Dittmaier, Kallweit, Uwer; Campbell, Ellis, Zanderighi</td>
</tr>
<tr>
<td>2. (pp \rightarrow H + 2 \text{ jets})</td>
<td>(H) in VBF</td>
</tr>
<tr>
<td></td>
<td>Campbell, Ellis, Zanderighi; Ciccolini, Denner Dittmaier</td>
</tr>
<tr>
<td>3. (pp \rightarrow t\bar{t}bb)</td>
<td>(t\bar{t}H)</td>
</tr>
<tr>
<td></td>
<td>Bredenstein, Denner Dittmaier, Pozzorini; Bevilacqua, Czakon, Papadopoulos, Pittau, Worek</td>
</tr>
<tr>
<td>4. (pp \rightarrow t\bar{t} + 2 \text{ jets})</td>
<td>(t\bar{t}H)</td>
</tr>
<tr>
<td></td>
<td>Bevilacqua, Czakon, Papadopoulos, Worek</td>
</tr>
<tr>
<td>5. (pp \rightarrow VVb\bar{b})</td>
<td>VBF (\rightarrow H \rightarrow VV), (t\bar{t}H), new physics</td>
</tr>
<tr>
<td>6. (pp \rightarrow VV + 2 \text{ jets})</td>
<td>VBF (\rightarrow H \rightarrow VV)</td>
</tr>
<tr>
<td></td>
<td>VBF: Bozzi, Jäger, Oleari, Zeppenfeld</td>
</tr>
<tr>
<td>7. (pp \rightarrow V + 3 \text{ jets})</td>
<td>new physics</td>
</tr>
<tr>
<td></td>
<td>Berger, Bern, Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre; Ellis, Melnikov, Zanderighi</td>
</tr>
<tr>
<td>8. (pp \rightarrow VVV)</td>
<td>SUSY trilepton</td>
</tr>
<tr>
<td></td>
<td>Lazopoulos, Melnikov, Petriello; Hankele, Zeppenfeld; Binoth, Ossola, Papadopoulos, Pittau</td>
</tr>
<tr>
<td>9. (pp \rightarrow b\bar{b}bb)</td>
<td>Higgs, new physics</td>
</tr>
</tbody>
</table>

Feynman diagram methods now joined by unitarity based methods.

L. Dixon

CERN HO10
NLO multileg: $W^\pm + 3j$, $Z^0 + 3j$

- Calculations of $W^\pm + 3j$
 - Rocket (R.K. Ellis, K. Melnikov, G. Zanderighi)

- excellent description of Tevatron data
 - moderate corrections
 - precise predictions
 - rich phenomenology

- Calculation of $Z^0 + 3j$ (Blackhat + Sherpa)

- Ongoing: $W^\pm + 4j$ (Blackhat + Sherpa)
 (see talk by D. Kosower)
Where are NNLO corrections needed?

- **Processes measured to few per cent accuracy**
 - $e^+e^- \rightarrow 3$ jets
 - 2+1 jet production in deep inelastic scattering
 - hadron collider processes:
 - jet production
 - vector boson (+jet) production
 - top quark pair production

- **Processes with potentially large perturbative corrections**
 - Higgs or vector boson pair production

- **Require NNLO corrections for**
 - meaningful interpretation of experimental data
 - precise determination of fundamental parameters
What is known to NNLO?

- **fully inclusive observables**
 - total cross sections: R-ratio, Drell-Yan and Higgs production
 - structure functions in deep inelastic scattering
 - evolution of parton distributions
 - Higgs production in vector boson fusion (P. Bolzoni, F. Maltoni, S. Moch, M. Zaro)

- **single differential observables**
 -rapidity distribution in Drell-Yan process
 (C. Anastasiou, L. Dixon, K. Melnikov, F. Petriello)

- **fully differential observables**
 - colourless high mass system including decays
 - jet production
NNLO calculations

- Require three principal ingredients (here: pp → 2j)
 - two-loop matrix elements
 - explicit infrared poles from loop integral
 - known for all massless 2 → 2 processes
 - one-loop matrix elements
 - explicit infrared poles from loop integral
 - and implicit poles from soft/collinear emission
 - usually known from NLO calculations
 - tree-level matrix elements
 - implicit poles from two partons unresolved
 - known from LO calculations

- Challenge: combine contributions into parton-level generator
- need method to extract implicit infrared poles
NNLO calculations

- **Solutions**
 - sector decomposition: expansion in distributions, numerical integration (T. Binoth, G. Heinrich; C. Anastasiou, K. Melnikov, F. Petriello; M. Czakon)
 - subtraction: add and subtract counter-terms: process-independent approximations in all unresolved limits, analytical integration
 - several well-established methods at NLO
 - NNLO for specific hadron collider processes:
 - q_T subtraction
 (S. Catani, M. Grazzini)
 - NNLO for e^+e^- processes:
 antenna subtraction
 (T. Gehrman, E.W.N. Glover, AG)
Higgs boson production at NNLO

- Dominant production process: gluon fusion
- exclusive calculations to NNLO, including H decay
 - using sector decomposition (C. Anastasiou, K. Melnikov, F. Petriello)
 - using q_T-subtraction (S. Catani, M. Grazzini)
- Application: Higgs at Tevatron
 - $H \rightarrow WW \rightarrow l\nu l\nu$
 - all distributions to NNLO (C. Anastasiou, G. Dissertori, M. Grazzini, F. Stöckli, B. Webber)
 - cuts on jet activity
 - neural-network output to NNLO
Vector boson production at NNLO

- Fully exclusive calculations
- parton-level event generator
 - using sector decomposition (K. Melnikov, F. Per trìello)
 - using q_T subtraction (S. Catani, L. Cieri, G. Ferrera, D. de Florian, M. Grazzini)
- including vector boson decay
- allowing arbitrary final-state cuts
- Application: lepton charge asymmetry (S. Catani, G. Ferrera, M. Grazzini)
- small NNLO corrections
- determine quark distributions

Status of Higher Order QCD Calculations
ICHEP 2010
Jet production at NNLO: e^+e^- collisions

- Two calculations of NNLO corrections to $e^+e^- \rightarrow 3$ jets
 - using antenna subtraction (T. Gehrmann, E.W.N. Glover, G. Heinrich, AG; S. Weinzierl)
 - as parton-level event generator
 - allow evaluation of event shapes and jet rates
- Improved description of data with reduced scale uncertainty
- One per cent for three-jet rate
- Use to extract α_s from LEP data:

$$\alpha_s(M_Z) = 0.1175 \pm 0.0020 \text{(exp)} \pm 0.0015 \text{(th)}$$
NNLO jet cross sections at hadron colliders

- two-loop matrix elements known for
 - two-jet production
 - vector-boson-plus-jet production (T. Gehrmann, E. Remiddi)
 - (2+1) jet production in DIS (T. Gehrmann, E.W.N. Glover)
- antenna subtraction formalism at NNLO: with radiators in initial state

![Diagram of NNLO jet cross sections with labels: final-final, initial-final, initial-initial]
NNLO jet cross sections at hadron colliders

- First implementation of antenna subtraction
 - $gg \rightarrow 4g$ subtraction constructed and tested (E.W.N. Glover, J. Pires)

- Integration of antenna functions
 - final-final antennae known
 - initial-final antennae derived recently: sufficient for (2+1) jets in DIS (A. Daleo, T. Gehrmann, G. Luisoni, AG)
 - initial-initial in progress (R. Boughezal, M. Ritzmann, AG)

- Top pair production at NNLO
 - In progress (see talk of R. Bonciani)
Conclusions and Outlook

- QCD is crucial for the success of LHC physics
 - interpretation of collider data
 - searches for new physics
 - precision studies

- Particle theory is getting ready
 - impressive progress in automated multiparticle NLO cross sections
 - high precision NNLO calculations for fully differential observables in benchmark processes are in progress