KamLAND double beta decay experiment using 136Xe

(KamLAND-Zen)

Masayuki Koga @ RCNS Tohoku University

Contents:
- summary of KamLAND
- KamLAND-Zen experiment
KamLAND

BO
50% dodecane
50% isoparaffin

\[\frac{\rho_{LS}}{\rho_{BO}} = 1.0004 \]

1,200 m3 LS

1,800 m3 Buffer Oil

Water Cherenkov Outer Detector

\[\rho = 0.78 \text{ g/cm}^3 \]
8,000 photons/MeV
\[\lambda \sim 10 \text{ m} \]

34% photo-coverage with 1,325 17” and 554 20” photo-tubes

Masayuki Koga
Summary of KamLAND

- 1998-2001: construction
- 2002: data-taking start
- We got some results
 - reactor anti-neutrino observation
 - neutrino deficit at ~175km base
 - spectral distortion
 - precise oscillation parameters measurement
- Geo neutrino detection
 - 2009~: KamLAND is running for 7Be solar neutrino observation after the LS distillation
 - 2011~: Xe phase
Reactor Anti-Neutrino

LMA2

~2005

~2007

Precise oscillation
Parameter measurement

2 cycle

Masayuki Koga

ICHEP2010
Geo Neutrino observation

Radio active nuclei produce heat

\[^{238}\text{U} \rightarrow ^{206}\text{Pb} + ^{8}_{\text{He}} + 6\text{e}^{-} + 6\overline{\nu}_{\text{e}} + 51.7\text{MeV} \]
\[^{232}\text{Th} \rightarrow ^{208}\text{Pb} + ^{6}_{\text{He}} + 4\text{e}^{-} + 4\overline{\nu}_{\text{e}} + 42.7\text{MeV} \]
\[^{40}\text{K} \rightarrow ^{40}\text{Ca} + \text{e}^{-} + \overline{\nu}_{\text{e}} + 1.31\text{MeV} \]

Terrestrial heat flow \(31\sim44\text{TW} \)

Contribution of radioactive nuclei \~20\text{TW} \)
(U series 8TW / Th series 8TW / \(^{40}\text{K} 4\text{TW} \))

from Crust + Mantle
-- based on Chondrite model (BSE model)

Upper crust of land
U:2. 8ppm / Th: 10.7ppm

No radiogenic heat from the core
Th/U ratio \~3.7

Masayuki Koga
Geo Neutrino observation

- preliminary result (K. Inoue, Neutrino2010)

 data set: March 9, 2002 ~ November 4, 2009

 total exposure: 3.49×10^{32} target–proton–years

 841 candidates in 0.9 - 2.6 MeV

BG total: 729.4 ± 32.3

- reactor $\bar{\nu}_e$: 484.7 ± 26.5
- 13C$(\alpha, n)^{16}$O: 165.3 ± 18.2
- accidental: 77.4 ± 0.1
- 9^Li: 2.0 ± 0.1
- atm. $\nu +$ fast n: < 2.8

rate - only analysis: 111^{+45}_{-43} events

Null signal exclusion 99.55%

(rate - only hypothesis test)
Rate-Shape-time analysis

0 signal is rejected at 99.997%CL. (>4σ) (rate-shape-time $\Delta\chi^2$)

of geo-ν events

$10^6_{-28}^{+29}$

$4.3_{-1.1}^{+1.2} \times 10^6$ /cm2/sec

$38.3_{-9.9}^{+10.3}$ TNU

corresponds to 16TW (for U+Th)
Consistent with the model prediction
7Be neutrino observation

LS was purified by the distillation system (2007 and 2008)

Installed new electronics – for 13C(α,n) background reduction (on going)

Data-taking continue (to March 2011)
KamLAND Zen experiment
(KamLAND zero neutrino Double Beta decay)

RCNS Tohoku University
I.Shimizu Y.Minekawa Y.Takemoto A.Terashima H.Watanabe H.Takahashi T.Morikawa

KEK
A.Suzuki

IPMU Tokyo Universities
A.Kozlov

University of Tennessee
Y.Efremenko

Colorado State university
B.E,Berger, D.Warner

TUNL
W.Tornow, D.Markoff, H.Karwowski

Masayuki Koga

ICHEP2010
Advantage for $\beta\beta$ experiment on KamLAND

- KamLAND has
 - huge volume: 1,200m3 Liquid Scintillator
 - Ultra low radioactivity
 - Low threshold: (It will be $E_{th} = \text{few} 100\text{keV}$)
 - established distillation technique
 - experience of balloon development
 - new electronics (from 2009)

 mach advantage for $0\nu\beta\beta$ experiment!

- Disadvantage

 Current Energy Resolution:

 \[\Delta E = \frac{6.2\%}{\sqrt{E(\text{MeV})}} \quad (34\% \text{ photo coverage}) \]

 This is enough on earlier stage!
KamLAND-Zen project

Merit of using 136Xe on KamLAND

<table>
<thead>
<tr>
<th>Nucleas</th>
<th>$T^{0\nu}_{1/2}$ (50 meV)</th>
<th>$T^{2\nu}_{1/2}$ measured (year)</th>
<th>Nat. Abundane (%)</th>
<th>Q-value (keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>136Xe\rightarrow^{136}Ba</td>
<td>4.55×10^{26}</td>
<td>$>10^{22}$</td>
<td>8.9</td>
<td>2476</td>
</tr>
</tbody>
</table>

- Available the Isotopic enrichment (>90%)
- Purification method was established
- Solubility to LS > 3%, easy extracted
- Slow $2\nu\beta\beta$ ($T^{2\nu}_{1/2} >10^{22}$ years)
- Small $T^{0\nu}/ T^{2\nu}$ ratio

* Basic idea by R.S. Raghavan

KamLAND-Zen project

1st phase enriched Xe 400kg
- R=1.7m balloon
- V=20.5m³, S=36.3m²
- LS : C₁₀H₂₂(81.8%) + PC(18%) + PPO + Xe (~2.5wt%)
- \(\rho_{LS} : 0.78\text{kg/ℓ} \)
- high sensitivity with low cost

Tank opening (2013 or 2015)

2nd phase enriched Xe 1000kg
- R=2.3m balloon
- V=51.3m³, S=66.7m²
- improvement of energy resolution
 (brighter LS, higher light concentrator)
Developments of system for 400kg Xe phase

1. Xe gas loading/ extraction system

2. New electronics - MOGURA

System will be ready in December 2010

3. Enriched Xe

- We have 190kg 90% enriched Xe gas
- Purchase 210kg more to March 2011 (400kg total)

4. Mini Balloon Φ3.4m

Handling and pressurized test by water (80μm film, June 2010)

More R&D
- ultra low contamination films
 U/Th/^{40}K \sim 10^{-13}g/g
- more thin film \sim 25μm

MIB will be delivered to March 2011

Background study using KamLAND MC (GEANT4)

Major BG
(1). ^{136}Xe 2νββ
(2). spallation isotopes: ^{10}C, ^{11}Be => 1/10 using new electronics help
(3). ^8B solar neutrinos <4.9 events/d/kton on KamLAND
(4). from Mini Balloon (MIB) material: ^{208}Tl, ^{214}Bi => vertex cut,

Simulated Energy Spectrum at KamLAND

Assumed
- 400kg 90% enriched Xe loaded LS
- MIB contamination (238U, 232Th, 40K)
 = (10^{-12}, 10^{-12}, 10^{-11})[g/g]
- neutrino effective mass $m_{\nu} < 150\text{meV}$ (the lower limit of the current claimed detection)
- $T_{1/2}(2\nu\beta\beta) > 10^{22}\text{y}$
- $T_{1/2}(0\nu\beta\beta) > 1.14\times10^{24}\text{y}$
- ^{10}C 90% tag, ^{214}Bi 66% tag

Summary of BG and signal in signal region

<table>
<thead>
<tr>
<th>Source</th>
<th>Total</th>
<th>$^{136}\text{Xe}\ 0\nu$</th>
<th>^{208}Tl</th>
<th>^{214}Bi</th>
<th>^{10}C</th>
<th>^{11}Be</th>
<th>^8B</th>
<th>Total</th>
<th>$^{136}\text{Xe}\ 2\nu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Events/year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.08±0.15</td>
<td>1.86±0.13</td>
<td>2.40±0.30</td>
<td>3.09±0.01</td>
<td>0.26±0.03</td>
<td>1.52±0.03</td>
<td>9.35±0.23</td>
<td>18.08±0.02</td>
<td>18.08±0.02</td>
<td></td>
</tr>
</tbody>
</table>
observable = \left[T_{1/2}^{0\nu} \right] = G^{0\nu} | M^{0\nu} |^2 | m_{\beta\beta} |^2

Target sensitivity of the 400kg phase is \sim 60\text{meV}

2 years on 100% fiducial vol. @90% enrichment

Target sensitivity of the 2nd phase is \sim 25 \text{meV} with 5 years.
summary

- KamLAND is running for reactor, Geo, 7Be solar (to 2011)
- KamLAND have ability to do $0\nu\beta\beta$ experiment
- KamLAND-Zen project will start using 400kg 90% enriched Xe from May 2011
- Target sensitivity on 400kg Phase $\sim 60\text{meV} \ @ 2\text{years}$
- Planning Xe1000 phase (from 2013 or 2015: depend on funding)

Thank you!