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Stable reduction reduction methods will 
be important in the evaluation of high-
order perturbative diagrams appearing in 
QCD and mixed QCD-electroweak radiative 
corrections at the LHC. We describe 
differential reduction techniques in the 
hypergeometric function representation of 
Feynman diagrams and present some 
representative examples.
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HYPERGEOMETRIC FUNCTION APPROACH

Regge proposed (about 45 years ago) that Feynman 
diagrams could be represented in terms of 
hypergeometric functions.  
This proposal was based on a study of the 
singularities of Feynman diagrams as a function 
complex momenta (Landau singularities).  Matching 
the of the HG function to the diagram would 
determine the appropriate representation. 
Much work has been done on finding the 
representation of various diagrams in terms of HG 
functions, and finding recursion relations among them 
which can be the basis for a reduction algorithm.



S.A. Yost   ICHEP 2010  Paris

3

HYPERGEOMETRIC SERIES

A Laurent series in r variables

is hypergeometric if for each i, the ratio
is a rational function in the multi-index   , with

This type of HG series called a Horn series.  
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HORN-TYPE HYPERGEOMETRIC FUNCTIONS

In general, starting with the Feynman 
parameterization, any Feynman diagram 
containing arbitrary powers of propagators of the 
form  (k2 – m2)−j can be written in terms of a 
multiple Mellin-Barnes integral leading to a linear 
combination

of Horn-type hypergeometric functions, where xj
are rational functions of masses and momenta, αj
depends on the powers of propagators and 
dimension of space-time, and C’s are ratios of Γ
functions with arguments depending on the α’s.
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HORN-TYPE HYPERGEOMETRIC FUNCTIONS

Specifically,  

with μja, νkb rational,  Aj, Bk complex.

An important property of Horn-type 
hypergeometric functions is the existence of a 
set of differential contiguous relations between 
functions with shifted arguments.

S.A. Yost   ICHEP 2010  Paris

5

( ) ( )
( )

rm
r

m

m
L

k

r

b kbkb

K

j

r

a jaja
xx

Bm

Am
xBA 1

1
0

1 1

1 1;; ∑
∏ ∑
∏ ∑∞

=
= =

= =

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

+Γ

+Γ
=Φ

ν

μ



S.A. Yost   ICHEP 2010  Paris

6

DIFFERENTIAL REPRESENTATION

The Horn-Type HG series can be shown to satisfy 
a system of differential equations of the form

with polynomials Pj, Qr satisfying
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DIFFERENTIAL CONTIGUOUS RELATIONS

Both the upper (Α) and lower (Β) arguments can 
be shifted by applying differential operators:

If inverse operators                               can be 
found, they can be applied to form the basis of a 
reduction algorithm relating all HG functions 
related by integer shifts in the arguments to a 
single HG function.
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TAKAYAMA ALGORITHM

The complete differential reduction for 2F1 was 
constructed by Gauss (1823).  The inverse 
operators for the general Horn-type functions can 
be constructed by the Takayama  algorithm.                
[Nobuki Takayama, Japan J. Appl. Math 6 (1989) 147].
The functions                 satisfy differential 
equations
with    
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TAKAYAMA ALGORITHM

Let D be the ring of differential operators with rational 
functions of    as coefficients. Let I be the left ideal in D
of generated by the differential operators Dj and 
construct a Gröbner basis G of I.  
Then                                     are solutions to the linear 
equations 

where fi, gi are arbitrary rational functions.  Solutions exist 
if the left ideal generated by G                         spans D.
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DIFFERENTIAL REDUCTION

Once the raising and lowering operators are 
available, it is possible to express all HG 
functions with integer shifts in terms of an 
original function                 and polynomials          
such that

Cases where xi = xj or                require a limiting 
procedure to define the reduction. 
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GENERALIZED HYPERGEOMETRIC FUNCTIONS

Generalized HG Functions have the form 

with the Pochhammer symbol  (a)n = Γ(a + n)/Γ(a)
They satisfy a differential equation

The raising and lowering operators are
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This allows a given HG function 
to be expressed in terms of a basic function

and p derivatives:

where S, Rk are polynomials in all parameters.
A program HYPERDIRE has been written to 
automate differential reduction.  
V.V. Bytev, M. Kalmykov, and B. Kniehl, in preparation. See Nucl. Phys. 
B836[FS] (2010) 129 for the theory and some examples which follow.
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CRITERIA FOR REDUCIBILITY
For certain cases of the parameters, the r.h.s. is further 

reducible: can be expressed in terms of lower-order HG 
functions or with fewer derivatives.

I:  If one of the ai is an integer, only p – 1 derivatives are 
needed: the pth term becomes a polynomial.

II: If one of the differences ai – bi is a positive integer (or 
0) and certain conditions hold for the ai, the r.h.s. can 
be expressed in terms of lower-order HG functions.

III: If at least two of the differences ai – bi – 1 are positive 
integers, and certain conditions hold on the ai, the 
r.hs. can be expressed in terms of lower-order HG 
functions.

IV:                                               with integers            can be 
expressed in terms of                           , HG functions of 
lower order, and derivatives.
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q – 1 

EXAMPLE:  SUNSET DIAGRAMS
The q-loop sunset diagram with 2 lines of 

mass m and q – 1 massless lines is

with massive denominators

and massless denominators
.

The Mellin-Barnes representation leads to  
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where α, σ are the sums of the two kinds of exponent.
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EXAMPLE: SUNSET DIAGRAMS

The one-loop case can be further reduced: 
For q = 1 (σ = 0) and integer ai , the hypergeometric 

function is reducible via Criterion II.  The n/2 upper 
and lower parameters can be removed:

This still satisfies Criterion II, since for even α, either       
α1 – α/2 or α2 – α/2 must be a positive integer or 0,  
while for odd α, similar reasoning applies to (α +1)/2.

Thus, we can reduce the result to 2F1 with one integer 
upper parameter.
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Compare Boos & Davydychev,  Theor. Math. Phys. 89 (1991) 1052
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EXAMPLE: SUNSET DIAGRAMS

The two-loop case can also be further reduced: 
For q = 2 and σ , ai integers, the parameters become 

which has integer parameter differences and an integer 
upper parameter, so it can be reduced to 3F2 and its 
first derivative, plus a rational function, with 3F2 of the 
form
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. . . 

EXAMPLE:  BUBBLE DIAGRAM
Consider the q-loop vacuum bubbles 

where the two black lines have mass M, 
the two red lines have mass m, and the 
q – 3 gold lines are all massless.  

The propagators of mass m have 
exponents α1, α2, the propagators of 
mass M have exponents β1, β2, the x
upper massless propagators have 
exponents σi, and the q – x – 3 lower 
ones have exponents ρi. 

This Feynman diagram is denoted Bq
112200.
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EXAMPLE:  BUBBLE DIAGRAM
In this case, a lengthy expression is obtained giving a sum 

of four HG functions 7F6.  These can be reduced to

for k = 0, 1, 2, 3 and Ii integers. 
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EXAMPLE:  BUBBLE DIAGRAM
In the special case x = 0, the first of these HG functions 
can be further reduced to 

for k = 0, 1 and Ii integers. 

In the special case x = 1, the first of these HG functions 
can be reduced to 

for k = 0, 1, 2 and Ii integers.
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ENUMERATING MASTER INTEGRALS

All examples we considered give a Feynman diagram of the 
form

where     is a list of powers of propagators, n is the 
dimension, and z is a ratio of kinematic parameters, while 
κ are rational numbers, and       are products of Γ
functions depending only on n and    .

The number of basis elements in the differential reduction is 
the highest power v of the differential operator in the 
expansion 

.
Where        are rational functions and      are lists of integers.
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ENUMERATING MASTER INTEGRALS

The Feynman diagram Φ(z) can alternatively be 
expressed in terms of a set of master integrals Φk (z) 
that may be derived from Φ(z) via integration by parts 
(IBP), symbolically

where terms expressible solely in terms of gamma 
functions are not counted. 
The number of terms in this expansion is related to 
the number of derivatives in the differential 
reduction:

h = v + 1.
This is independent of the number k of hypergeometric 

functions in the original expression. 
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