DIFFERENTIAL REDUCTION TECHNIQUES FOR THE EVALUATION OF FEYNMAN DIAGRAMS

Scott Yost - The Citadel, Charleston, South Carolina, USA with Vladimir Bytev, Mikhail Kalmykov \& Berndt Kniehl - II. Inst. Theor. Phys., Hamburg , B.F.L. Ward - Baylor University, Waco, Texas, USA

Stable reduction reduction methods will be important in the evaluation of highorder perturbative diagrams appearing in QCD and mixed QCD-electroweak radiative corrections at the LHC. We describe differential reduction techniques in the hypergeometric function representation of Feynman diagrams and present some representative examples.

HYPERGEOMETRIC FUNCTION APPROACH

* Regge proposed (about 45 years ago) that Feynman diagrams could be represented in terms of hypergeometric functions.
* This proposal was based on a study of the singularities of Feynman diagrams as a function complex momenta (Landau singularities). Matching the of the HG function to the diagram would determine the appropriate representation.
* Much work has been done on finding the representation of various diagrams in terms of HG functions, and finding recursion relations among them which can be the basis for a reduction algorithm.

HYPERGEOMETRIC SERIES

A Laurent series in r variables

$$
\Phi(\vec{x})=\sum C(\vec{m}) x_{1}^{m_{1}} \cdots x_{r}^{m_{r}}
$$

is hypergeometric if for each i, the ratio $C\left(\vec{m}+\vec{e}_{i}\right) / C(\vec{m})$ is a rational function in the multi-index \vec{m} with

$$
\vec{e}_{i}=(0, \cdots, 0,1,0, \ldots 0)
$$

This type of HG series called a Horn series.

HORN-TYPE HYPERGEOMETRIC FUNCTIONS

* In general, starting with the Feynman parameterization, any Feynman diagram containing arbitrary powers of propagators of the form $\left(k^{2}-m^{2}\right)^{-j}$ can be written in terms of a multiple Mellin-Barnes integral leading to a linear combination

$$
\sum_{\vec{\alpha}} C_{\vec{\alpha}} x_{1}^{\alpha_{1}} \cdots x_{r}^{\alpha_{r}} \Phi(\vec{A} ; \vec{B} ; \vec{x})
$$

of Horn-type hypergeometric functions, where x_{j} are rational functions of masses and momenta, α_{j} depends on the powers of propagators and dimension of space-time, and C 's are ratios of Γ functions with arguments depending on the α 's.

HORN-TYPE HYPERGEOMETRIC FUNCTIONS

Specifically,

$$
\Phi(\vec{A} ; \vec{B} ; \vec{x})=\sum_{m=0}^{\infty}\left(\frac{\prod_{j=1}^{K} \Gamma\left(\sum_{a=1}^{r} \mu_{j a} m_{a}+A_{j}\right)}{\prod_{k=1}^{L} \Gamma\left(\sum_{b=1}^{r} v_{k b} m_{b}+B_{k}\right)}\right) x_{1}^{m_{1}} \cdots x_{r}^{m_{r}}
$$

with $\mu_{j a}, v_{k b}$ rational, A_{j}, B_{k} complex.

An important property of Horn-type hypergeometric functions is the existence of a set of differential contiguous relations between functions with shifted arguments.

DIFFERENTIAL REPRESENTATION

The Horn-Type HG series can be shown to satisfy a system of differential equations of the form

$$
Q_{j}\left(\sum_{k=1}^{r} x_{k} \frac{\partial}{\partial x_{k}}\right) \frac{\Phi(\vec{x})}{x_{j}}=P_{j}\left(\sum_{k=1}^{r} x_{k} \frac{\partial}{\partial x_{k}}\right) \Phi(\vec{x}), \quad j=1, \cdots, r
$$

with polynomials P_{j}, Q_{r} satisfying

$$
\frac{C\left(\vec{m}+\vec{e}_{j}\right)}{C(\vec{m})}=\frac{P_{j}(\vec{m})}{Q_{j}(\vec{m})}
$$

DIFFERENTIAL CONTIGUOUS RELATIONS

* Both the upper (A) and lower (B) arguments can be shifted by applying differential operators:

$$
\begin{aligned}
& \Phi\left(\vec{A}+\vec{e}_{c} ; \vec{B} ; \vec{x}\right)=\left(\sum_{b=1}^{r} \mu_{c a} x_{a} \frac{\partial}{\partial x_{a}}+A_{c}\right) \Phi(\vec{A} ; \vec{B} ; \vec{x})=U_{\left[A_{c} \rightarrow A_{c}+1\right]}^{+} \Phi(\vec{A} ; \vec{B} ; \vec{x}) \\
& \Phi\left(\vec{A} ; \vec{B}-\overrightarrow{\vec{e}_{c}} ; \vec{x}\right)=\left(\sum_{b=1}^{r} v_{c b} x_{b} \frac{\partial}{\partial x_{b}}+B_{c}\right) \Phi(\vec{A} ; \vec{B} ; \vec{x})=L_{\left[B_{c} \rightarrow B_{c}-1\right]}^{-} \Phi(\vec{A} ; \vec{B} ; \vec{x})
\end{aligned}
$$

If inverse operators $U_{\left[A_{c} \rightarrow A_{c}-1\right]}^{-}, \quad L_{\left[B_{c} \rightarrow B_{c}+1\right]}^{+}$can be found, they can be applied to form the basis of a reduction algorithm relating all HG functions related by integer shifts in the arguments to a single HG function.

TAKAYAMA ALGORITHM

* The complete differential reduction for ${ }_{2} F_{1}$ was constructed by Gauss (1823). The inverse operators for the general Horn-type functions can be constructed by the Takayama algorithm.
[Nobuki Takayama, Japan J. Appl. Math 6 (1989) 147]. The functions $\Phi(\vec{A} ; \vec{B} ; \vec{x})$ satisfy differential equations $D_{j} \Phi(\vec{A} ; \vec{B} ; \vec{x})=0, \quad j=1, \ldots, r$ with

$$
D_{j}=Q_{j}\left(\sum_{k=1}^{r} x_{k} \frac{\partial}{\partial x_{k}}\right) \frac{1}{x_{j}}-P_{j}\left(\sum_{k=1}^{r} x_{k} \frac{\partial}{\partial x_{k}}\right) .
$$

TAKAYAMA ALGORITHM

* Let 验 be the ring of differential operators with rational functions of \vec{X} as coefficients. Let \mathbb{I} be the left ideal in \boldsymbol{B} of generated by the differential operators D_{j} and construct a Gröbner basis $\mathfrak{G}=\left\{G_{i} \mid i=1, \ldots, q\right\}$ of \mathfrak{I}.
Then $U_{\left[A_{c} \rightarrow A_{c}-1\right]}^{-}, \quad L_{\left[B_{c} \rightarrow B_{c}+1\right]}^{+}$are solutions to the linear equations

$$
\begin{aligned}
& \sum_{i=1}^{q} f_{i}(\vec{x}) G_{i}+U_{\left[A_{c}+1 \rightarrow A_{c}\right.}^{-} U_{\left[A_{c} \rightarrow A_{c}+1\right]}^{+}=1, \\
& \sum_{i=1}^{q} g_{i}(\vec{x}) G_{i}+L_{\left[B_{c}-1 \rightarrow B_{c}\right]}^{+} L_{\left[B_{c} \rightarrow B_{c}-1\right]}^{-}=1 .
\end{aligned}
$$

where f_{i}, g_{i} are arbitrary rational functions. Solutions exist if the left ideal generated by $\mathfrak{G} \cup\left\{U_{\gamma_{c}}^{+}\right\}$[or $\left.\left\{L_{\sigma_{c}}^{-}\right\}\right]$spans 雨.

DIFFERENTIAL REDUCTION

Once the raising and lowering operators are available, it is possible to express all HG functions with integer shifts in terms of an original function $\Phi(\vec{A} ; \vec{B} ; \vec{x})$ and polynomials such that $P_{0}(\vec{x}), P_{m_{1}, \cdots, m_{r}}(\vec{x})$

Cases where $x_{i}=x_{j}$ or $P_{0}(\vec{x})=0$ require a limiting procedure to define the reduction.

GENERALIZED HYPERGEOMETRIC FUNCTIONS

Generalized HG Functions have the form

$$
{ }_{p} F_{p-1}(\vec{a} ; \vec{b} ; z)={ }_{p} F_{p-1}\left(\left.\begin{array}{ccc}
a_{1}, & \ldots, & a_{p} \\
b_{1}, & \ldots, & b_{p-1}
\end{array} \right\rvert\, z\right)=\sum_{n=0}^{\infty} \frac{\prod_{i=1}^{p}\left(a_{i}\right)_{n}}{\left.\left.\prod_{j=1}^{p_{j}(} b_{j}\right)_{n}\right)_{n}} \frac{z^{n}}{n!}
$$

with the Pochhammer symbol $(a)_{n}=\Gamma(a+n) / \Gamma(a)$

* They satisfy a differential equation

$$
\left[z \prod_{i=1}^{p}\left(z \frac{d}{d z}+a_{i}\right)-z \frac{d}{d z} \prod_{k=1}^{p-1}\left(z \frac{d}{d z}+b_{k}-1\right)\right]_{\rho} F_{p-1}(\vec{a} ; \vec{b} ; z)=0
$$

The raising and lowering operators are

$$
U_{\left[a_{i} \rightarrow a_{i}+1\right]}^{+}=1+\frac{z}{a_{i}} \frac{d}{d z}, \quad L_{\left[b_{i}+1 \rightarrow b_{i}\right]}^{-}=1+\frac{z}{b_{i}-1} \frac{d}{d z} .
$$

RESULT OF REDUCTION

\times This allows a given HG function ${ }_{p+1} F_{p}(\vec{a}+\vec{m}, \vec{b}+\vec{n} ; z)$ to be expressed in terms of a basic function ${ }_{p+1} F_{p}(\vec{a}, \vec{b} ; z)$ and p derivatives:

$$
\begin{aligned}
& S(\vec{a}, \vec{b}, z){ }_{p+1} F_{p}(\vec{a}+\vec{m}, \vec{b}+\vec{n} ; z) \\
& \quad=\sum_{k=0}^{p} R_{k}(\vec{a}, \vec{b}, z)\left(z \partial_{z}\right)^{k}{ }_{p+1} F_{p}(\vec{a}, \vec{b} ; z) .
\end{aligned}
$$

where S, R_{k} are polynomials in all parameters.
A program HYPERDIRE has been written to automate differential reduction.
V.V. Bytev, M. Kalmykov, and B. Kniehl, in preparation. See Nucl. Phys. B836[FS] (2010) 129 for the theory and some examples which follow.

CRITERIA FOR REDUCIBILITY

For certain cases of the parameters, the r.h.s. is further reducible: can be expressed in terms of lower-order HG functions or with fewer derivatives.
I: If one of the a_{i} is an integer, only $p-1$ derivatives are needed: the $p^{\text {th }}$ term becomes a polynomial.
II: If one of the differences $a_{i}-b_{i}$ is a positive integer (or 0) and certain conditions hold for the a_{i}, the r.h.s. can be expressed in terms of lower-order HG functions.
III: If at least two of the differences $a_{i}-b_{i}-1$ are positive integers, and certain conditions hold on the a_{i}, the r.hs. can be expressed in terms of lower-order HG functions.
$\mathrm{IV}:{ }_{p+1} F_{p}(\vec{A}+\vec{m}, \vec{a}+\vec{k}, \vec{A}+\vec{m}+\overrightarrow{1}, \vec{b}+\vec{l} ; z)$ with integers $\vec{m}, \vec{k}, \vec{l}$ can be expressed in terms of ${ }_{p+1} F_{p}(\vec{A}, \vec{a}, \vec{A}+\overrightarrow{1}, \vec{b} ; t) \mid G$ functions of lower order, and derivatives.

EXAMPLE: SUNSET DIAGRAMS

The q-loop sunset diagram with 2 lines of mass m and $q-1$ massless lines is

$$
J_{22}^{q}\left(m^{2}, p^{2}, \alpha_{1}, \alpha_{2}, \sigma_{1}, \cdots, \sigma_{q-1}\right)
$$

with massive denominators

$$
\left(k_{q}^{2}-m^{2}\right)^{\alpha_{1}},\left[\left(p+\sum k_{i}\right)^{2}-m^{2}\right]^{\alpha_{1}}
$$

and massless denominators

$$
\left(k_{1}^{2}\right)^{\sigma_{1}}, \cdots,\left(k_{q-1}^{2}\right)^{\sigma_{q-1}} .
$$

The Mellin-Barnes representation leads to
${ }_{4} F_{3}\left(\left.\begin{array}{c}\alpha_{1}+\sigma-\frac{n}{2}(q-1), \alpha_{2}+\sigma-\frac{n}{2}(q-1), \sigma-\frac{n}{2}(q-2), \alpha+\sigma-\frac{n}{2} q \\ \frac{n}{2}, \sigma+\frac{1}{2}(\alpha-n(q-1)), \sigma+\frac{1}{2}(\alpha+1-n(q-1))\end{array} \right\rvert\, \frac{p^{2}}{4 m^{2}}\right)$
where α, σ are the sums of the two kinds of exponent.

EXAMPLE: SUNSET DIAGRAMS

The one-loop case can be further reduced:
For $q=1(\sigma=0)$ and integer a_{i}, the hypergeometric function is reducible via Criterion II. The $n / 2$ upper and lower parameters can be removed:

$$
{ }_{4} F_{3}\left(\left.\begin{array}{c}
\alpha_{1}, \alpha_{2}, \frac{n}{2}, \alpha-\frac{n}{2} \\
\frac{n}{2}, \frac{\alpha}{2}, \frac{\alpha+1}{2}
\end{array} \right\rvert\, \frac{p^{2}}{4 m^{2}}\right)={ }_{3} F_{2}\left(\left.\begin{array}{c}
\alpha_{1}, \alpha_{2}, \alpha-\frac{n}{2} \\
\frac{\alpha}{2}, \frac{\alpha+1}{2}
\end{array} \right\rvert\, \frac{p^{2}}{4 m^{2}}\right)
$$

Compare Boos \& Davydychev, Theor. Math. Phys. 89 (1991) 1052
This still satisfies Criterion II, since for even α, either $\alpha_{1}-\alpha / 2$ or $\alpha_{2}-\alpha / 2$ must be a positive integer or 0 , while for odd α, similar reasoning applies to $(\alpha+1) / 2$.
Thus, we can reduce the result to ${ }_{2} F_{1}$ with one integer upper parameter.

EXAMPLE: SUNSET DIAGRAMS

The two-loop case can also be further reduced:
For $q=2$ and σ, a_{i} integers, the parameters become

$$
{ }_{4} F_{3}\left(\left.\begin{array}{c|c}
\alpha_{1}+\sigma-\frac{n}{2}, \alpha_{2}+\sigma-\frac{n}{2}, \sigma, \alpha+\sigma-n \\
\frac{n}{2}, \sigma+\frac{1}{2}(\alpha-n), \sigma+\frac{1}{2}(\alpha+1-n)
\end{array} \right\rvert\, \begin{array}{|c}
4 m^{2}
\end{array}\right)
$$

which has integer parameter differences and an integer upper parameter, so it can be reduced to ${ }_{3} F_{2}$ and its first derivative, plus a rational function, with ${ }_{3} F_{2}$ of the form

$$
{ }_{3} F_{2}\left(\begin{array}{r|c}
1, I_{1}-\frac{n}{2}, I_{2}-n & p^{2} \\
I_{3}+\frac{n}{2}, I_{4}-\frac{n-1}{2} & \frac{p^{2}}{4 m^{2}}
\end{array}\right) .
$$

EXAMPLE: BUBBLE DIAGRAM

Consider the q-loop vacuum bubbles
where the two black lines have mass M, the two red lines have mass m, and the $q-3$ gold lines are all massless.
The propagators of mass m have exponents α_{1}, α_{2}, the propagators of mass M have exponents β_{1}, β_{2}, the x upper massless propagators have exponents σ_{i}, and the $q-x-3$ lower ones have exponents ρ_{i}.
This Feynman diagram is denoted $B^{q}{ }_{112200}$

EXAMPLE: BUBBLE DIAGRAM

In this case, a lengthy expression is obtained giving a sum of four HG functions ${ }_{7} F_{6}$. These can be reduced to
$\left.\left(z \partial_{z}\right)^{k}{ }_{4} F_{3}\binom{I_{1}-\frac{n}{2}(x-1), I_{2}-\frac{n}{2} x, I_{3}-\frac{n}{2}(x+1), \left.I_{4}+\frac{1}{2}+\frac{n}{2}(q-x-2) \right\rvert\,}{ I_{5}+\frac{n}{2}, I_{6}+\frac{n}{2}(q-x-1), I_{7}+\frac{1}{2}-\frac{n}{2} x} \frac{M^{2}}{m^{2}}\right)$
$\left(z \partial_{z}\right)^{k}{ }_{4} F_{3}\left(\left.\begin{array}{c}I_{1}-\frac{n-1}{2}, I_{2}-\frac{n}{2}(q-2), I_{3}-\frac{n}{2}(q-1), I_{4}-\frac{n}{2} q \\ I_{5}+\frac{n}{2}(q-x-1), I_{6}+\frac{n}{2}(q-x-2), I_{7}+\frac{1}{2}-\frac{n}{2}(q-1)\end{array} \right\rvert\, \frac{M^{2}}{m^{2}}\right)$
$\left(z \partial_{z}\right)^{k}{ }_{4} F_{3}\left(\left.\begin{array}{c}1, I_{1}+\frac{1}{2}, I_{3}-\frac{n}{2}(q-1), I_{2}-\frac{n}{2}(q-2), I_{4}-\frac{n}{2}(q-3) \\ I_{5}+\frac{n}{2}, I_{6}+\frac{1}{2}-\frac{n}{2}(q-2), I_{7}-\frac{n}{2}(q-x-2), I_{8}-\frac{n}{2}(q-x-3)\end{array} \right\rvert\, \frac{M^{2}}{m^{2}}\right)$
for $k=0,1,2,3$ and I_{i} integers.

EXAMPLE: BUBBLE DIAGRAM

* In the special case $x=0$, the first of these HG functions can be further reduced to

$$
\left(z \partial_{z}\right)^{k}{ }_{3} F_{2}\left(\left.\begin{array}{c}
1, I_{2}-\frac{n}{2}, I_{3}+\frac{1}{2}+\frac{n}{2}(q-2) \\
I_{4}+\frac{n}{2}(q-1), I_{5}+\frac{1}{2}
\end{array} \right\rvert\, \frac{M^{2}}{m^{2}}\right)
$$

for $k=0,1$ and I_{i} integers.

In the special case $x=1$, the first of these HG functions can be reduced to

$$
\left.\left(z \partial_{2}\right)^{k}{ }_{4} F_{3}\binom{1, I_{1}-\frac{n}{2}, I_{2}-n, I_{3}+\frac{1}{2}+\frac{n}{2}(q-3)}{I_{4}+\frac{n}{2}, I_{5}+\frac{n}{2}(q-2), I_{5}-\frac{n-1}{2}} \frac{M^{2}}{m^{2}}\right)
$$

for $k=0,1,2$ and I_{i} integers.

ENUMERATING MASTER INTEGRALS

All examples we considered give a Feynman diagram of the form

$$
\Phi(n, \vec{j} ; z)=\sum_{i=1}^{k} z^{l_{i}} C_{l_{i}}(n, \vec{j})_{p+1} F_{p}\left(\begin{array}{l}
\vec{A}_{i} \\
\vec{B}_{i}
\end{array} \kappa z\right)
$$

where \vec{j} is a list of powers of propagators, n is the dimension, and z is a ratio of kinematic parameters, while κ are rational numbers, and C_{l} are products of Γ functions depending only on n and \bar{j}.

The number of basis elements in the differential reduction is the highest power v of the differential operator in the expansion

$$
{ }_{p+1}^{\mathrm{p}+1} F_{p}\left(\left.\begin{array}{l}
\vec{A} \mid \\
\vec{B}
\end{array} \right\rvert\, z\right)=\sum_{l=1}^{v} R_{l}(z)\left(z \partial_{z}\right)^{l}{ }_{s+1} F_{s}\left(\left.\begin{array}{l}
\vec{A}-\vec{I}_{1} \\
\vec{B}-\vec{I}_{2}
\end{array} \right\rvert\, z\right) \text {. }
$$

Where R_{l} are rational functions and \vec{I}_{i} are lists of integers.

ENUMERATING MASTER INTEGRALS

* The Feynman diagram $\Phi(z)$ can alternatively be expressed in terms of a set of master integrals $\Phi_{k}(z)$ that may be derived from $\Phi(z)$ via integration by parts (IBP), symbolically

$$
\Phi(n, \vec{j} ; z)=\sum_{k=1}^{h} B_{k}(n, \vec{j} ; z) \Phi_{k}(n ; z)
$$

where terms expressible solely in terms of gamma functions are not counted.
The number of terms in this expansion is related to the number of derivatives in the differential reduction:

$$
h=v+1 .
$$

This is independent of the number k of hypergeometric functions in the original expression.

