

A study of the b-quark fragmentation function with the DELPER detector at LEP I

and an averaged distribution obtained at the Z pole

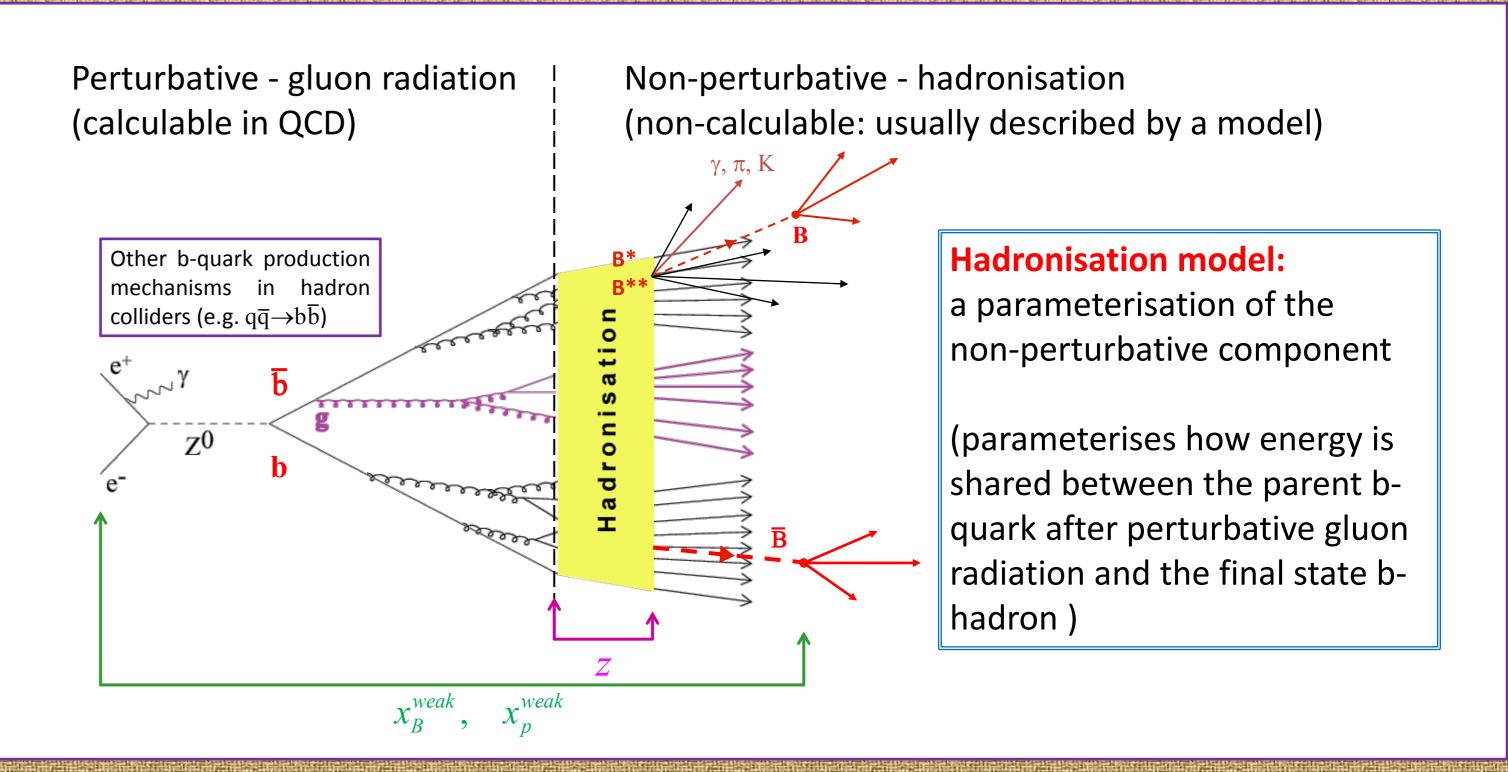
To be submitted to Eur. Phys. J. C

Eli Ben-Haim (on behalf of the DELPHI collaboration) e-mail: benhaim@in2p3.fr

b-Fragmentation = process by which b-quarks organize themselves into hadrons (strong interaction, $\Delta t \sim 10^{-24}$ sec)

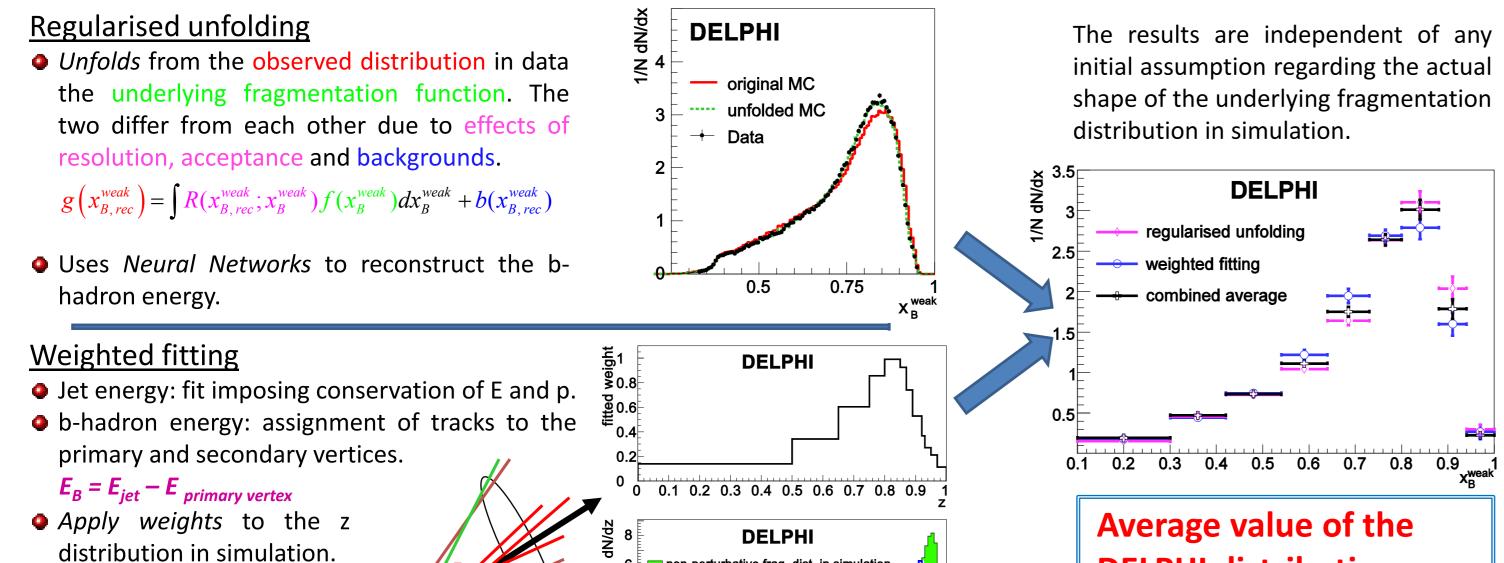


Fragmentation function: probability density function of z, x_B^{weak} , x_p^{weak} ...



DELPHI measurement of the fragmentation function

Combination of results of the x_B^{weak} distribution from two independent analyses, using different approaches.



 $12.97^{+0.77}_{-0.71}$ $12.50^{+0.82}_{-0.76}$ $2.67^{+0.15}_{-0.14}$ $2.63^{+0.17}_{-0.15}$ $2.29^{+0.19}_{-0.17}$ $2.05^{+0.19}_{-0.18}$ $1.45^{+0.28}_{-0.22}$ $1.31^{+0.24}_{-0.20}$ $0.663^{+0.035}_{-0.036}$ 0.664 ± 0.036 **DELPHI** distribution:

NO MODEL

0 5 10 15 20 **N** 25 30 35 40

moments

Uncertainties for x_B^{weak} (x_p^{weak}) are rescaled by 1.24 (1.37) to account for the dispersion of measurements, mainly between ALEPH and SLD.

Each of the 4 measurements of the fragmentation

distribution used a different choice of binning and

has a different number of effective degrees of

freedom. To obtain a combined distribution, a

and cutting away non-significant degrees of freedom

Inverse Mellin

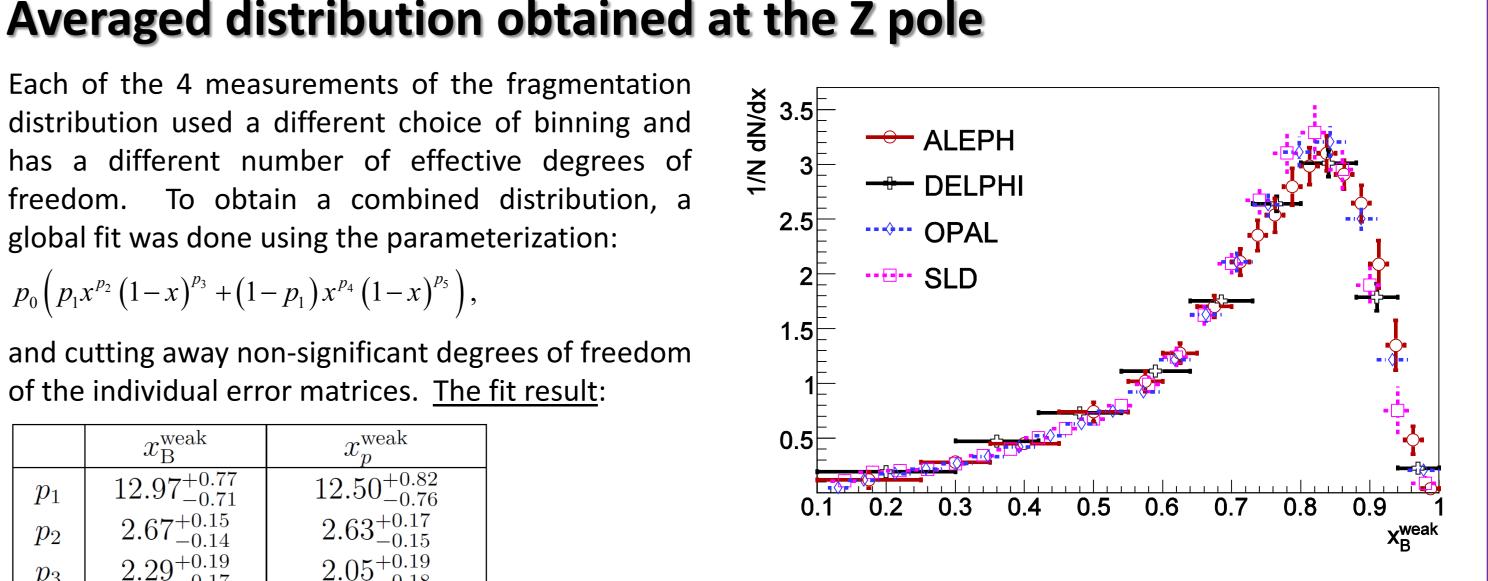
transform

 $f_{\text{non-pert.}}(x) =$

global fit was done using the parameterization:

of the individual error matrices. The fit result:

 $p_0 \left(p_1 x^{p_2} \left(1 - x \right)^{p_3} + \left(1 - p_1 \right) x^{p_4} \left(1 - x \right)^{p_5} \right),$



Average value of the combined distribution: $\langle x_B^{weak} \rangle = 0.7092 \pm 0.0025$

Model-independent extraction of the non-perturbative QCD component

Mellin transform

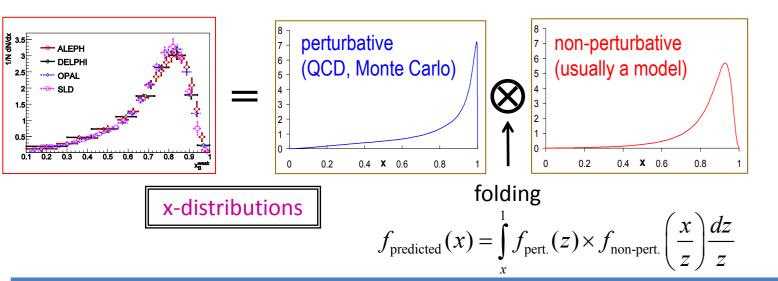
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E. Ben-Haim et al. Phys. Lett. B 580 (2004) 108.

Fit weights to obtain best

data and simulation.

agreement between p_R in

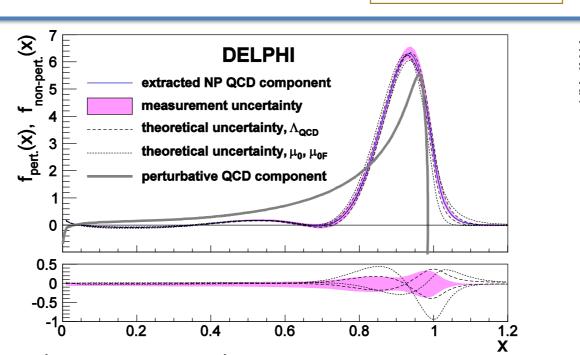


When extracted with the NLL perturbative QCD computation,

the non-perturbative component shows a "non-physical" behaviour: it has to be extended to x > 1. This is related to the break-down of theory near threshold ($x \sim 1$), where the NLL perturbative component becomes negative.

Folding the two components together results in the physical measured fragmentation function.

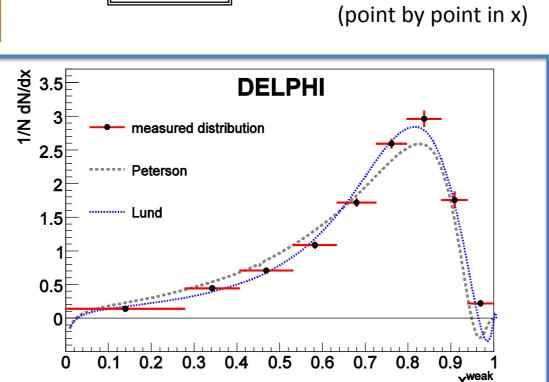
Folding the non-physical perturbative component with a physical non-perturbative one (e.g. hadronisation model) results in a non-physical product.



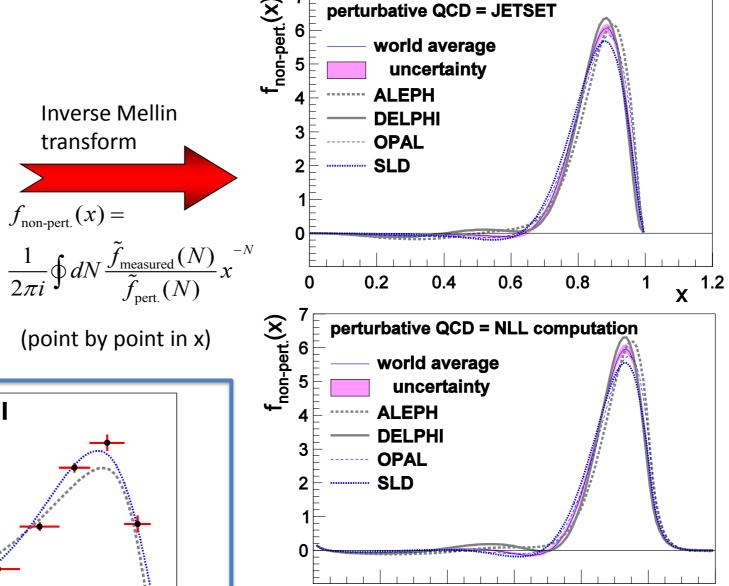
 $\otimes \rightarrow \times$

 $\langle x_B^{weak} \rangle = 0.699 \pm 0.011$

The non-perturbative QCD component extracted from DELPHI's result. Experimental and theoretical uncertainties are shown.



The non-perturbative QCD component folded with hadronisation models does not reproduce the measurement.



8.0 0.6 As the order of QCD computation increases, the non-perturbative peak is displaced to higher x.

The low-x region indicates that hard gluon radiation is well accounted for in the perturbative component.

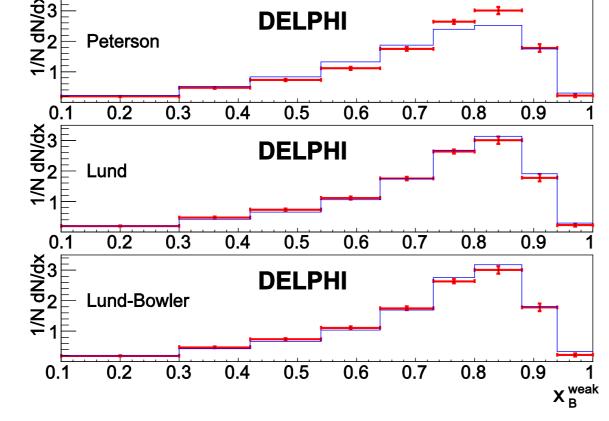
The non-perturbative QCD frag. function obtained by this method is directly extracted from data, and hadronisationmodel independent.

It strongly depends on the perturbative component used in the extraction.

non-perturbative component may be used in studies of b-hadron production other experimental environments than LEP (e.g. hadron colliders), provided that it is used jointly with the same perturbative framework as the one used for its extraction.

Fits to hadronisation models

The DELPHI measurement was compared with expectations from different non-perturbative hadronisation models within a Monte Carlo simulation (PYTHIA 6.156). Only the Lund and Lund-Bowler models give reasonable descriptions of the data, the Lund ansatz being favoured.



Model	Parameters	χ^2/NDF	Correlation
Peterson $\left[\frac{1}{x}\left(1-\frac{1}{x}-\frac{\epsilon_{\rm b}}{1-x}\right)^{-2}\right]$	$\epsilon_{\rm b} = (4.06^{+0.46}_{-0.41}) \times 10^{-3}$	55.8/6	_
Lund $\left[\frac{1}{x}(1-x)^a \exp\left(-\frac{bm_{\rm b\perp}^2}{x}\right)\right]$	$a = 1.84^{+0.23}_{-0.21}$ $b = 0.642^{+0.073}_{-0.063} \text{ GeV}^{-2}$	9.8/5	92.2%
Lund-Bowler $\left[\frac{1}{x^{1+r_Qbm_{\rm b\perp}^2}}(1-x)^a\exp\left(-\frac{bm_{\rm b\perp}^2}{x}\right)\right]$	$a = 1.04^{+0.14}_{-0.12}$ $b = 3.08^{+0.45}_{-0.39} \text{ GeV}^{-2}$	20.7/5	85.6%
$(r_Q = 1)$			

A global fit of the Lund and Lund-Bowler models parameters has been done using measurements from ALEPH, DELPHI, OPAL and SLD. The χ^2 minimised in this study was the sum of χ^2 corresponding to the four results.

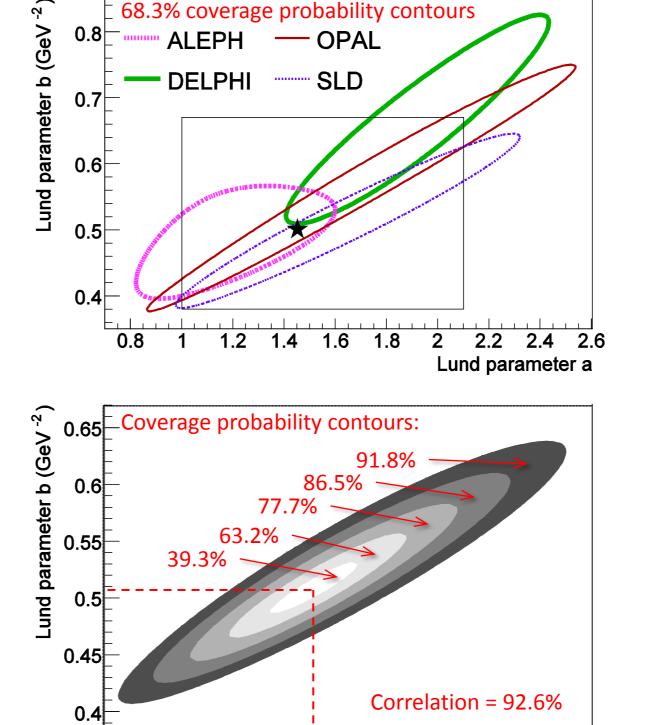
measured

perturbative

The fit clearly favours the Lund model over the Lund-Bowler one. Results obtained by this approach within a Monte Carlo simulation were found to be similar to the ones obtained by comparing the resulting integral of the folding product:

$$f_{\text{predicted}}(x) = \int_{z}^{1} f_{\text{pert.}}(z) \times f_{\text{non-pert.}}^{\text{model}}\left(\frac{x}{z}\right) \frac{dz}{z}$$

in each bin of the measured function.



1.6

Lund parameter a

1.2

1.4

Result for the world average Lund parameters to use in **PYTHIA 6.156:**

$$a = 1.48^{+0.11}_{-0.10}$$

$$b = 0.509^{+0.024}_{-0.023} \text{ GeV}^{-2}$$

This result is expected to be valid in experimental environments other than LEP. It would be fruitful to check how it fits data in the LHC and the TeVatron.