New physics sensitivity of the rare decay mode $b \rightarrow s \ell^+ \ell^-$

Tobias Hurth

with U. Egede, W. Reece (LHCb, Imperial), J. Matias, M. Ramon (Barcelona)

QCD effects in B decays

short-distance physics
perturbative

long-distance physics
nonperturbative

Factorization theorems: separating long- and short-distance physics

• Electroweak effective Hamiltonian:

$$H_{eff} = -\frac{4G_F}{\sqrt{2}} \sum C_i(\mu, M_{heavy}) \mathcal{O}_i(\mu)$$

• $\mu^2 \approx M_{New}^2 >> M_W^2$: 'new physics' effects:

$$C_i^{SM}(M_W) + C_i^{New}(M_W)$$

How to compute the hadronic matrix elements $\mathcal{O}_i(\mu = m_b)$?
Inclusive modes $B \to X_s \gamma$ or $B \to X_s \ell^+ \ell^-$

- Heavy mass expansion for inclusive modes:

$$\Gamma(\bar{B} \to X_s \gamma) \xrightarrow{m_b \to \infty} \Gamma(b \to X_s^{\text{parton}} \gamma), \quad \Delta^{\text{nonpert.}} \sim \Lambda_{QCD}^2/m_b^2$$

No linear term Λ_{QCD}/m_b (perturbative contributions dominant)

How to compute the hadronic matrix elements $\mathcal{O}_i(\mu = m_b)$?
Inclusive modes $B \to X_s \gamma$ or $B \to X_s \ell^+ \ell^-$

- Heavy mass expansion for inclusive modes:

$$\Gamma(\bar{B} \to X_s \gamma) \xrightarrow{m_b \to \infty} \Gamma(b \to X_s^{\text{parton}} \gamma), \quad \Delta^{\text{nonpert.}} \sim \Lambda_{QCD}^2 / m_b^2$$

No linear term Λ_{QCD} / m_b (perturbative contributions dominant)

- More sensitivities to nonperturbative physics due to kinematical cuts:
 shape functions; multiscale OPE (SCET) with $\Delta = m_b - 2E_\gamma^0$

Inclusive modes $B \to X_s \gamma$ or $B \to X_s \ell^+ \ell^-$

- Heavy mass expansion for inclusive modes:

$$\Gamma(\bar{B} \to X_s \gamma) \xrightarrow{m_b \to \infty} \Gamma(b \to X^{\text{parton}}_s \gamma), \quad \Delta^{\text{nonpert.}} \sim \frac{\Lambda_{QCD}^2}{m_b^2}$$

No linear term Λ_{QCD}/m_b (perturbative contributions dominant)

- If one goes beyond the leading operator (\mathcal{O}_7, \mathcal{O}_9):
 breakdown of local expansion
 naive estimate of non-local matrix elements leads to 5% uncertainty.

Exclusive modes $B \rightarrow K^*\gamma$ or $B \rightarrow K^*\ell^+\ell^-$

Naive approach:

Parametrize the hadronic matrix elements in terms of form factors

How to compute the hadronic matrix elements $\mathcal{O}(m_b)$?
Exclusive modes $B \to K^*\gamma$ or $B \to K^*\ell^+\ell^-$

QCD-improved factorization: BBNS 1999

$$\mathcal{T}_a^{(i)} = C_a^{(i)}\xi_a + \phi_B \otimes \mathcal{T}_a^{(i)} \otimes \phi_{a,K^*} + O(\Lambda/m_b)$$

Existence of ‘non-factorizable’ strong interaction effects which do not correspond to form factors
Exclusive modes $B \rightarrow K^*\gamma$ or $B \rightarrow K^*\ell^+\ell^-$

QCD-improved factorization: BBNS 1999

\[T^{(i)}_a = C^{(i)}_a \xi_a + \phi_B \otimes T^{(i)}_a \otimes \phi_{a,K^*} + O(\Lambda/m_b) \]

- Separation of perturbative hard kernels from process-independent nonperturbative functions like form factors
- Relations between formfactors in large-energy limit
- Limitation: insufficient information on power-suppressed Λ/m_b terms (breakdown of factorization: 'endpoint divergences')

Phenomenologically highly relevant issue

general strategy of LHCb to look at ratios of exclusive modes
Opportunities in $B \rightarrow K^* (\rightarrow K\pi) \ell^+ \ell^-$: angular distributions

Kinematics

- Assuming the K^* to be on the mass shell, the decay $\bar{B}^0 \rightarrow K^{*0} (\rightarrow K^- \pi^+) \ell^+ \ell^-$ described by the lepton-pair invariant mass, s, and the three angles θ_l, θ_{K^*}, ϕ.

After summing over the spins of the final particles:

$$\frac{d^4\Gamma}{dq^2 \, d\cos \theta_l \, d\cos \theta_K \, d\phi} = \frac{9}{32\pi} J(q^2, \theta_l, \theta_K, \phi)$$

$$J(q^2, \theta_l, \theta_K, \phi) =$$

$$= J_{1s} \sin^2 \theta_K + J_{1c} \cos^2 \theta_K + (J_{2s} \sin^2 \theta_K + J_{2c} \cos^2 \theta_K) \cos 2\theta_l + J_3 \sin^2 \theta_K \sin^2 \theta_l \cos 2\phi$$

$$+ J_4 \sin 2\theta_K \sin 2\theta_l \cos \phi + J_5 \sin 2\theta_K \sin \theta_l \cos \phi + (J_{6s} \sin^2 \theta_K + J_{6c} \cos^2 \theta_K) \cos \theta_l$$

$$+ J_7 \sin 2\theta_K \sin \theta_l \sin \phi + J_8 \sin 2\theta_K \sin 2\theta_l \sin \phi + J_9 \sin^2 \theta_K \sin^2 \theta_l \sin 2\phi$$

- LHCb statistics ($10 fb^{-1}$, but also already $2 fb^{-1}$) allows for a full-angular fit!

However: Subleties in measuring the 12 coefficients J_i
However: Subleties in measuring the 12 coefficients J_i

- Angular distribution functions: depend on the 6 complex K^* spin amplitudes

$$J_i = J_i(A_{\perp L/R}, A_{\parallel L/R}, A_{0 L/R})$$

$$A_{\perp,\parallel} = (H_{+1} \mp H_{-1})/\sqrt{2}, \quad A_0 = H_0$$

- By inspection one finds: $J_{1s} = 3J_{2s}, \quad J_{1c} = -J_{2c}$

Moreover, $J_{6c} = 0$ for $m_{\text{lepton}} = 0$

12 theoretical independent amplitudes A_j

$\Rightarrow 9$ independent coefficient functions J_i
Symmetries of \(J_i = J_i(A_{\perp L/R}, A_{|| L/R}, A_{0L/R}) \)

Angular distribution spin averaged!

- Global phase transformation of the \(L \) amplitudes

\[
A'_{\perp L} = e^{i\phi_L} A_{\perp L}, \quad A'_{\perp R} = e^{i\phi_L} A_{\perp R}, \quad A'_{0L} = e^{i\phi_L} A_{0L}
\]

- Global phase transformations of the \(R \) amplitudes

\[
A'_{\perp R} = e^{i\phi_R} A_{\perp R}, \quad A'_{\perp R} = e^{i\phi_R} A_{\perp R}, \quad A'_{0R} = e^{i\phi_R} A_{0R}
\]

- Continuous \(L-R \) rotation

\[
\begin{align*}
A'_{\perp L} &= + \cos \theta A_{\perp L} + \sin \theta A^*_{\perp R} \\
A'_{\perp R} &= - \sin \theta A^*_{\perp L} + \cos \theta A_{\perp R} \\
A'_{0L} &= + \cos \theta A_{0L} - \sin \theta A^*_{0R} \\
A'_{0R} &= + \sin \theta A^*_{0L} + \cos \theta A_{0R} \\
A'_{|| L} &= + \cos \theta A_{|| L} - \sin \theta A^*_{|| R} \\
A'_{|| R} &= + \sin \theta A^*_{|| L} + \cos \theta A_{|| R}.
\end{align*}
\]

Only 9 amplitudes \(A_j \) are independent in respect to the angular distribution

Observables as \(F(J_i) \) are also invariant under these symmetries!
- **Transversity amplitude** $A_T^{(1)}$

 Defining the helicity distributions Γ_{\pm} as

 $\Gamma_{\pm} = |H_{\pm 1}^L|^2 + |H_{\pm 1}^R|^2$

 one can define \textit{(Melikhov, Nikitin, Simula 1998)}

 \[
 A_T^{(1)} = \frac{\Gamma_- - \Gamma_+}{\Gamma_- + \Gamma_+} \quad \quad A_T^{(1)} = \frac{-2\text{Re}(A_\parallel A_\perp^*)}{|A_\perp|^2 + |A_\parallel|^2}
 \]

 Very sensitive to right-handed currents \textit{(Lunghi, Matias 2006)}

Big surprise:

$A_T^{(1)}$ is not invariant under the symmetries of the angular distribution

- $A_T^{(1)}$ cannot be extracted from the full angular distribution

- LHCb: practically not possible to measure the helicity of the final states on a event-by-event basis (neither as statistical distribution)

- Not a principal problem, but $A_T^{(1)}$ not an observable at LHCb or at Super B (measure three-momentum and charge)
Additional symmetry

Observation - correlations in the Monte-Carlo fit between different A_i-guided us to fourth symmetry:

$$n_i' = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \cosh i\tilde{\theta} & -\sinh i\tilde{\theta} \\ -\sinh i\tilde{\theta} & \cosh i\tilde{\theta} \end{bmatrix} n_i,$$

where θ and $\tilde{\theta}$ can be varied independently.

$$n_1 = (A^L_\parallel, A^{R*}_\parallel)$$
$$n_2 = (A^L_\perp, -A^{R*}_\perp)$$
$$n_3 = (A^L_0, A^{R*}_0)$$

There is an additional non-trivial relationship between the angular distributions J_i

$$J_{1s} = 3J_{2s} \quad J_{1c} = -J_{2c} \quad J_{1c} = 6 \frac{(2J_{1s} + 3J_3)(4J^2_4 + J^2_7) + (2J_{1s} - 3J_3)(J^2_5 + 4J^2_8)}{16J^2_1 - 9 (4J^2_3 + J^2_6 + 4J^2_9)}$$

$$- 36 \frac{J_{6s}(J_4 J_5 + J_7 J_8) + J_9(J_5 J_7 - 4J_4 J_8)}{16J^2_{1s} - 9 (4J^2_3 + J^2_{6s} + 4J^2_9)}.$$
Number of symmetries depend on assumptions:

<table>
<thead>
<tr>
<th>Case</th>
<th>Coefficients</th>
<th>Dependencies</th>
<th>Amplitudes</th>
<th>Symmetries</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_\ell = 0, A_S = 0$</td>
<td>11</td>
<td>3</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>$m_\ell = 0$</td>
<td>11</td>
<td>2</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>$m_\ell > 0, A_S = 0$</td>
<td>11</td>
<td>1</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>$m_\ell > 0$</td>
<td>12</td>
<td>0</td>
<td>8</td>
<td>4</td>
</tr>
</tbody>
</table>
Theoretical framework

- Effective Hamiltonian describing the quark transition $b \to s \ell^+\ell^-$:

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=1}^{10} \left[C_i(\mu) \mathcal{O}_i(\mu) + C'_i(\mu) \mathcal{O}'_i(\mu) \right]$$

We focus on magnetic and semi-leptonic operators and their chiral partners.

QCDf/SCET analysis

- Crucial input: In the $m_B \to \infty$ and $E_{K^*} \to \infty$ limit

7 form factors ($A_i(s)/T_i(s)/V(s)$) reduce to 2 universal form factors (ξ_\perp, ξ_\parallel)

Form factor relations broken by α_s and Λ/m_b corrections

- Above results are valid in the kinematic region in which

$$E_{K^*} \simeq \frac{m_B}{2} \left(1 - \frac{s}{m_B^2} + \frac{m_{K^*}^2}{m_B^2}\right)$$

is large.

We restrict our analysis to the dilepton mass region $s \in [1\text{GeV}^2, 6\text{GeV}^2]$.
K^* spin amplitudes in the heavy quark and large energy limit

\[A_{\perp,\parallel} = (H_{+1} \mp H_{-1})/\sqrt{2}, \quad A_0 = H_0. \]

\[
A_{L,R} = N\sqrt{2}\lambda^{1/2} \left[(C_9^{\text{eff}} \mp C_{10}) \frac{V(s)}{m_B + m_{K^*}} + \frac{2m_b}{s} (C_7^{\text{eff}} + C_7^{\text{eff}'}) T_1(s) \right]
\]

\[
A_{L,R} = -N\sqrt{2}(m_B^2 - m_{K^*}^2) \left[(C_9^{\text{eff}} \mp C_{10}) \frac{A_1(s)}{m_B - m_{K^*}} + \frac{2m_b}{s} (C_7^{\text{eff}} - C_7^{\text{eff}'}) T_2(s) \right]
\]

\[
A_{0L,R} = -\frac{N}{2m_{K^*}\sqrt{s}} \left[(C_9^{\text{eff}} \mp C_{10}) \left\{ (m_B^2 - m_{K^*}^2 - s)(m_B + m_{K^*})A_1(s) - \frac{\lambda}{m_B + m_{K^*}} A_2(s) \right\} \right.
\]

\[
+ 2m_b(C_7^{\text{eff}} - C_7^{\text{eff}'}) \left\{ (m_B^2 + 3m_{K^*}^2 - s)T_2(s) - \frac{\lambda}{m_B - m_{K^*}} T_3(s) \right\} \right]
\]

\[
A_{\perp L,R} = +\sqrt{2}Nm_B(1 - \hat{s}) \left[(C_9^{\text{eff}} \mp C_{10}) + \frac{2\hat{m}_b}{\hat{s}} (C_7^{\text{eff}} + C_7^{\text{eff}'}) \right] \xi_{\perp}(E_{K^*})
\]

\[
A_{\parallel L,R} = -\sqrt{2}Nm_B(1 - \hat{s}) \left[(C_9^{\text{eff}} \mp C_{10}) + \frac{2\hat{m}_b}{\hat{s}} (C_7^{\text{eff}} - C_7^{\text{eff}'}) \right] \xi_{\parallel}(E_{K^*})
\]

\[
A_{0L,R} = -\frac{Nm_B}{2\hat{m}_{K^*}\sqrt{\hat{s}}}(1 - \hat{s})^2 \left[(C_9^{\text{eff}} \mp C_{10}) + 2\hat{m}_b(C_7^{\text{eff}} - C_7^{\text{eff}'}) \right] \xi_{\parallel}(E_{K^*})
\]

Contract observables where universal form factors cancel at LO.
Careful design of observables

- Good sensitivity to NP contributions, i.e. to $C_7^{eff'}$
- Good experimental resolution
- Small theoretical uncertainties
 - Dependence of soft form factors, ξ_\perp and ξ_\parallel, to be minimized!
 - form factors should cancel out exactly at LO, best for all s
 - syst. errors due to QCD sum rules almost eliminated
Careful design of observables

- Good sensitivity to NP contributions, i.e. to $C_7^{eff'}$
- Good experimental resolution
- Small theoretical uncertainties
 - Dependence of soft form factors, ξ_\perp and ξ_\parallel, to be minimized! Form factors should cancel out exactly at LO, best for all s syst. errors due to QCD sum rules almost eliminated
 - Unknown Λ/m_b power corrections
 \[A_{\perp,\parallel,0} = A_{\perp,\parallel,0}^0 \left(1 + c_{\perp,\parallel,0}\right) \] vary c_i in a range of $\pm 10\%$ and also of $\pm 5\%$ illustrates effect without making assumption about level

CP violating observables:

Ansatz with random strong phases $\Phi_{1/2}$ and $C_{1/2}$ with 5% and 10%

\[A = A_1(1 + C_1 e^{i\phi_1}) + e^{i\theta} A_2(1 + C_2 e^{i\phi_2}) \]

- Scale dependence of NLO result
Benchmark points in MSSM

Analysis of SM and models with additional right handed currents \((\mathcal{C}_7^{\text{eff}'}) \)

Specific model:

MSSM with non-minimal flavour violation in the down squark sector

Diagonal: \(\mu = M_1 = M_2 = M_{H^+} = m_{\tilde{u}_R} = 1 \text{ TeV} \quad \tan \beta = 5 \)

- **Scenario A:** \(m_{\tilde{g}} = 1 \text{ TeV} \) and \(m_{\tilde{d}} \in [200, 1000] \text{ GeV} \)
 \(-0.1 \leq (\delta_{LR}^d)_{32} \leq 0.1 \)
 a) \(m_{\tilde{g}}/m_{\tilde{d}} = 2.5, \quad (\delta_{LR}^d)_{32} = 0.016 \)
 b) \(m_{\tilde{g}}/m_{\tilde{d}} = 4, \quad (\delta_{LR}^d)_{32} = 0.036. \)

- **Scenario B:** \(m_{\tilde{d}} = 1 \text{ TeV} \) and \(m_{\tilde{g}} \in [200, 800] \text{ GeV} \)
 mass insertion as in Scenario A.
 c) \(m_{\tilde{g}}/m_{\tilde{d}} = 0.7, \quad (\delta_{LR}^d)_{32} = -0.004 \)
 d) \(m_{\tilde{g}}/m_{\tilde{d}} = 0.6, \quad (\delta_{LR}^d)_{32} = -0.006. \)

Check of compatibility with other constraints (\(B \) physics, \(\rho \) parameter, Higgs mass, particle searches, vacuum stability constraints)
Interesting observables

- **Forward-backward asymmetry**

\[
A_{FB} \equiv \frac{1}{d\Gamma/dq^2} \left(\int_{0}^{1} d(cos \theta) \frac{d^2\Gamma[\bar{B} \rightarrow K^*\ell^+\ell^-]}{dq^2d\cos \theta} - \int_{-1}^{0} d(cos \theta) \frac{d^2\Gamma[\bar{B} \rightarrow K^*\ell^+\ell^-]}{dq^2d\cos \theta} \right)
\]

\[
A_{FB} = \frac{3}{2} \frac{\text{Re}(A_{\|L}A_{\perp L}^*) - \text{Re}(A_{\|R}A_{\perp R}^*)}{|A_0|^2 + |A_{\|}|^2 + |A_{\perp}|^2}
\]

Form factors cancel out at LO only for Zero.

- **Longitudinal polarisation of** \(K^* \)

\[
F_L(s) = \frac{|A_0|^2}{|A_0|^2 + |A_{\|}|^2 + |A_{\perp}|^2}
\]

Form factors do not cancel at LO (\(\rightarrow \) larger hadronic uncertainties)

- **Transversity amplitude** \(A_T^2 \) \hspace{1cm} (Krüger, Matias 2005)

\[
A_T^{(2)} = \frac{|A_{\perp}|^2 - |A_{\|}|^2}{|A_{\perp}|^2 + |A_{\|}|^2}
\]

Sensitive to right-handed currents (in LO directly \(\sim C_7^{efff'} \))

Formfactor cancel out at LO for all \(s \)

Zero of \(A_T^{(2)} \) (for \(C_7^{efff'} \neq 0 \)) coincides with the Zero of \(A_{FB} \) at LO

and is also independent from \(C_7^{efff'} \) as in \(A_{FB} \).
New observables

By inspection of the K^* spin amplitudes in terms of Wilson coefficients and SCET form factors one identifies further observables

- sensitive to $C^{eff'}_7$
- invariant under $R-L$ symmetries
- theoretical clean
- with high experimental resolution

$$A^{(3)}_T = \frac{|A_{0L}A^*_{||L} + A^*_{0R}A_{||R}|}{\sqrt{|A_{0L}|^2|A_{||}|^2}}$$

$$A^{(4)}_T = \frac{|A_{0L}A^*_{||L} - A^*_{0R}A_{\perp R}|}{|A^*_{0L}A_{||L} + A_{0R}A^*_{||R}|}$$

New observables allow crosschecks

Different sensibility to $C^{eff'}_7$ via A_0 in $A^{(3)}_T$, $A^{(4)}_T$

Next step: design of observables sensitive to other new physics operators

(see also Buras et al. 2008)
Results

\[A_T^{(3)} = \frac{|A_0 L A^*_L + A_{0R}^* A^*_R|}{\sqrt{|A_0|^2 |A_\perp|^2}} \]

Theoretical sensitivity

light green ±5% Λ/m_b

dark green ±10% Λ/m_b

Experimental sensitivity (10fb⁻¹)

light green 1 σ

dark green 2 σ

SuperLHCb/SuperB can offer more precision

Crucial: theoretical status of Λ/m_b corrections has to be improved
Comparison between old and new observables

The experimental errors assuming SUSY scenario (b) with large-gluino mass and positive mass insertion, is compared to the theoretical errors assuming the SM
CP violating observables

- Angular distributions allow for the measurement of 7 CP asymmetries
 (Krüger, Seghal, Sinha2 2000, 2005)

- NLO (α_s) corrections included: scale uncertainties reduced
 (however, some CP asymmetries start at NLO only)
 (Bobeth, Hiller, Piranishvili 2008)

- New CP-violating phases in $C_{10}, C'_{10}, C_9,$ and C'_9 are by now NOT very much constrained and enhance the CP-violating observables drastically
 (Bobeth, Hiller, Piranishvili 2008; Buras et al. 2008)

- New physics reach of CP-violating observables of the angular distributions depends on the theoretical and experimental uncertainties:
 - soft/QCD formfactors
 - other input parameters
 - scale dependences
 - Λ/m_b corrections
 - experimental sensitivity in the full angular fit
Appropriate normalization eliminates the uncertainty due to form factors

Example

\[A^{6s} = \frac{I^{6s} - \bar{I}^{6s}}{d(\Gamma + \bar{\Gamma})/dq^2} \]

\[A^{6s}_{V2s} = \frac{I^{6s} - \bar{I}^{6s}}{I^{2s} + \bar{I}^{2s}} \]

Red bands: conservative estimate of uncertainty due to formfactors only

Relative error drops dramatically
However:

Λ/m_b corrections very small in SM due to small weak SM phase

but sizeable if NP CPV effects are large!

In addition poor experimental uncertainty!

Hard to see these will ever be useful observables

\[A^V_8 = \frac{J_8 - \bar{J}_8}{J_8 + \bar{J}_8} \]

|C_9^{NP}| = 2, \phi_9^{NP} = \frac{\pi}{2}, red bands

|C_{10}^{NP}| = 3, \phi_{10} = \frac{\pi}{2}, blue bands

Note: poor experimental sensitivity NOT due to normalisation!
CP conserving $A_T^{(i)}$ observables more sensitive to complex phases

$A_T^{(2)}$

\[a \quad (C_7^{NP}, C'_7) = (0.26e^{-i\frac{7\pi}{16}}, 0.2e^{i\pi}), \]
\[b \quad (0.07e^{i\frac{3\pi}{5}}, 0.3e^{i\frac{3\pi}{5}}), \]
\[c \quad (0.03e^{i\pi}, 0.07) \]

All benchmarks currently experimentally allowed

LHCb toy MC 10 fb$^{-1}$
CP conserving $A_T^{(i)}$ observables more sensitive to complex phases

$A_T^{(2)}$

A_{FB}

\begin{align*}
 a \quad (C_7^{NP}, C_7') &= (0.26e^{-i\frac{7\pi}{16}}, 0.2e^{i}) \\
 b \quad (0.07e^{i\frac{3\pi}{5}}, 0.3e^{i\frac{3\pi}{5}}) \\
 c \quad (0.03e^{i\pi}, 0.07)
\end{align*}

All benchmarks currently experimentally allowed
\[A_T^{(5)} = \frac{|A_L A_R^* + A_R^* A_L^*|}{|A_L|^2 + |A_R|^2 + |A_L^*|^2 + |A_R^*|^2} \]

\[A_T^{(5)} \bigg|_{m_\ell=0} = \frac{\sqrt{16J_1^s 2 - 9J_6^s 2 - 36(J_3^2 + J_9^2)}}{8J_1^s} \]

NP in \(C_{10}' = 3e^{i\pi/8} \) and \(C_9^{NP} = 2e^{i\pi/8} \)

(a) \((C_7^{NP}, C_7') = (0.26e^{-i\frac{7\pi}{16}}, 0.2e^{i\pi})\)

(b) \((0.07e^{i\frac{3\pi}{5}}, 0.3e^{i\frac{3\pi}{5}})\)

(d) \((0.18e^{-i\frac{\pi}{2}}, 0)\)

Very different behaviour for different NP contributions
Conclusions

When making measurements in $B \to K^*\ell^+\ell^+$ great care has to be taken to

Minimise theoretical errors due formfactors and Λ/m_b corrections

Design observables that satisfy symmetries and that have optimised specific NP sensitivity

Framework developed for how to get such observables

Theoretical and experimental errors estimated

CPV observables have no experimental sensitivity

Most important pending issue for NP sensitivity

Getting bounds on Λ/m_b corrections

Highly relevant for LHCb measurements
Further work:

Above results are valid in the kinematic region in which

$$E_{K^*} \simeq \frac{m_B}{2} \left(1 - \frac{s}{m_B^2} + \frac{m_{K^*}^2}{m_B^2} \right)$$

is large.

We restrict our analysis to the dilepton mass region $s \in [1\text{GeV}^2, 6\text{GeV}^2]$

Charm loops

Khodjamirian et al. 2010

Going for region with $q^2 > 6\text{GeV}^2$ requires better understanding of charm loops

Soft recoil region (high-q^2)

Bobeth et al. 2010

Use HQET framework as applied by Grinstein and Pirjol (2004)

Observables constructed in a similar way to us
Extra
- NLO corrections included
- Λ/m_b corrections estimated for each amplitude as ±10% and ±5%

 this uncertainty fully dominant

- Input parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_B</td>
<td>5.27950 ± 0.00033 GeV</td>
<td>λ</td>
<td>0.2262 ± 0.0014</td>
</tr>
<tr>
<td>m_K</td>
<td>0.896 ± 0.040 GeV</td>
<td>$\Lambda^{(n_f=5)}$</td>
<td>220 ± 40 MeV</td>
</tr>
<tr>
<td>M_W</td>
<td>80.403 ± 0.029 GeV</td>
<td>ρ</td>
<td>0.235 ± 0.031</td>
</tr>
<tr>
<td>M_Z</td>
<td>91.1876 ± 0.0021 GeV</td>
<td>$\bar{\eta}$</td>
<td>0.349 ± 0.020</td>
</tr>
<tr>
<td>$\hat{m}_t(\hat{m}_t)$</td>
<td>172.5 ± 2.7 GeV</td>
<td>Λ_{QCD}</td>
<td>220 ± 40 MeV</td>
</tr>
<tr>
<td>$m_{b,PS}(2$ GeV)</td>
<td>4.6 ± 0.1 GeV</td>
<td>$\alpha_s(M_Z)$</td>
<td>0.1176 ± 0.0002</td>
</tr>
<tr>
<td>m_c</td>
<td>1.4 ± 0.2 GeV</td>
<td>α_{em}</td>
<td>1/137.035999679</td>
</tr>
<tr>
<td>f_B</td>
<td>200 ± 30 MeV</td>
<td>$a_1(K^*)_\perp,</td>
<td></td>
</tr>
<tr>
<td>$f_{K^*,\perp}(1$ GeV)</td>
<td>185 ± 10 MeV</td>
<td>$a_2(K^*)_\perp$</td>
<td>0.06 ± 0.06</td>
</tr>
<tr>
<td>$f_{K^*,</td>
<td></td>
<td>}$</td>
<td>218 ± 4 MeV</td>
</tr>
<tr>
<td>$\xi_{K^*,</td>
<td></td>
<td>}(0)$</td>
<td>0.16 ± 0.03</td>
</tr>
<tr>
<td>$\xi_{K^*,\perp}(0)$</td>
<td>0.26 ± 0.02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\xi_{K^*,\perp}(0)$ has been determined from experimental data.
More on kinematics:

\[e_z = \frac{p_{K^-} + p_{\pi^+}}{|p_{K^-} + p_{\pi^+}|}, \quad e_l = \frac{p_{\mu^-} \times p_{\mu^+}}{|p_{\mu^-} \times p_{\mu^+}|}, \quad e_K = \frac{p_{K^-} \times p_{\pi^+}}{|p_{K^-} \times p_{\pi^+}|} \]

\[\cos \theta_l = \frac{q_{\mu^-} \cdot e_z}{|q_{\mu^-}|}, \quad \cos \theta_K = \frac{r_{K^-} \cdot e_z}{|r_{K^-}|}, \quad \sin \phi = (e_l \times e_K) \cdot e_z, \quad \cos \phi = e_K \cdot e_l \]

z axis: Direction of anti-\(K^*0\) in rest frame of anti-\(B_d\)

\(\theta_l\) : Angle between \(\mu^-\) and \(z\) axis in \(\mu\mu\) rest frame

\(\theta_K\) : Angle between \(K^-\) and \(z\) axis in anti-\(K^*\) rest frame

\(\phi\) : Angle between the anti-\(K^*\) and \(\mu\mu\) decay planes
Error budget in inclusive and exclusive modes

SLHCb versus SFF Important role of Λ/m_b corrections

Measurement of inclusive modes restricted to e^+e^- machines. (S)LHC experiments: Focus on theoretically clean exclusive modes necessary.

Well-known example: Zero of forward-backward-charge asymmetry in $b \rightarrow s\ell^+\ell^-$

Exclusive Zero:

Theoretical error: $9\% + O(\Lambda/m_b)$ uncertainty

Experimental error at SLHC: 2.1\% Libby

Inclusive Zero:

Theoretical error: $O(5\%)$ Huber, Hurth, Lunghi, arXiv:0712.3009

Λ/m_b corrections very small due to small weak SM phase

\[A_{V2s}^{6s} = \frac{I_{6s}^0 - \bar{I}_{6s}^0}{I_{2s}^0 + \bar{I}_{2s}^0} \]

Uncertainty due Λ/m_b corrections significantly smaller than error due to input parameters

Ansatz with random strong phases $\phi_{1/2}$ and $C_{1/2}$ with 5% and 10%

\[A = A_1(1 + C_1 e^{i\phi_1}) + e^{i\theta} A_2(1 + C_2 e^{i\phi_2}) \]

Will significantly larger in scenarios with large new physics phases
NP benchmarks

1. $|C_9^{\text{NP}}| = 2.$ and $\theta_9^{\text{NP}} = \frac{\pi}{8}, \frac{\pi}{2}, \pi$
2. $|C_{10}^{\text{NP}}| = 1.5.$ and $\theta_{10}^{\text{NP}} = \frac{\pi}{8}, \frac{\pi}{2}, \pi$
3. $|C_{10}'| = 3.$ and $\theta_{10}' = \frac{\pi}{8}, \frac{\pi}{2}, \pi$

$A_{B_2}^2$ vs $q^2 (\text{GeV}^2)$

Λ/m_b corrections

$\theta_i = \frac{\pi}{8}$

$\theta_i = \frac{\pi}{2}$
Possible new physics effects versus experimental uncertainties

\[|C_{9, NP}| = 2, \Phi_9 = \pi/8; |C_{10, NP}| = 1.5, \Phi_{10} = \pi/8; |C'_{10}| = 2, \Phi_{10'} = \pi/8 \]

New physics not outside the experimental 2\sigma range.

However, all phases (0 → 2\pi) are compatible with the present data

In contrast to observables like \(A^i_T \), CP observables call for Super-LHCb
old observables: data available

Babar FPCP 2008
Belle ICHEP 2008

$$A_{FB} = \frac{3 \text{ Re}(A_{||L} A_{\perp L}^*) - \text{ Re}(A_{||R} A_{\perp R}^*)}{2 |A_0|^2 + |A_||^2 + |A_\perp|^2}$$

Babar FPCP 2008
Belle ICHEP 2008

$$F_L(s) = \frac{|A_0|^2}{|A_0|^2 + |A_||^2 + |A_\perp|^2}$$
LHCb ($10fb^{-1}$) will clarify the situation
Projection fit possible for $A_T^{(2)}$, F_L, A_{FB}

$$\frac{d\Gamma'}{d\phi} = \frac{\Gamma'}{2\pi} \left(1 + \frac{1}{2} (1 - F_L) A_T^{(2)} \cos 2\phi + A_{Im} \sin 2\phi \right),$$

$$\Gamma' = \frac{d\Gamma}{dq^2}$$

$$\frac{d\Gamma'}{d\theta_i} = \Gamma' \left(\frac{3}{4} F_L \sin^2 \theta_i + \frac{3}{8} (1 - F_L)(1 + \cos^2 \theta_i) + A_{FB} \cos \theta_i \right) \sin \theta_i,$$

$$\frac{d\Gamma'}{d\theta_K} = \frac{3\Gamma'}{4} \sin \theta_K \left(2F_L \cos^2 \theta_K + (1 - F_L) \sin^2 \theta_K \right),$$

Observables appear linearly, fits performed on data binned in q^2

First experimental measurements with limited accuracy is possible

But: $A_T^{(2)}$ suppressed by $1 - F_L$

Full angular fit is superior, once the data set is large enough ($\sim 2 fb^{-1}$)

much better resolution (factor 3 even in $A_T^{(2)}$)

New observables are available

Unbinned analysis, q^2 dependence parametrised by polynomial
• Inclusive $b \to s \ell^{+} \ell^{-}$

$$\frac{d}{ds} BR(\bar{B} \to X_s \ell^{+} \ell^{-}) \times 10^{-5}$$

NNLL prediction of $\bar{B} \to X_s \ell^{+} \ell^{-}$: dilepton mass spectrum

NNLL QCD corrections $q^2 \in [1 GeV^2, 6 GeV^2]$
central value: -14%, perturbative error: $13\% \to 6.5\%$

NNLL prediction of $\bar{B} \to X_s \ell^{+} \ell^{-}$: forward-backward-asymmetry (FBA)

Update with electromagnetic corrections for dilepton mass spectrum and FBA including the high-q^2 region Huber, Hurth, Lunghi arXiv/0712.3009[hep-ph]
Focus on corrections to the Wilson coefficients which are enhanced by a large logarithm \(\alpha_e \log(m_W/m_b) \).

Corrections to matrix elements lead to large collinear logarithm \(\log(m_b/m_\ell) \) which survive integration if a restricted part of the dilepton mass spectrum is considered:

- \(+2\%\) effect in the low-\(q^2 \) region for muons, for the electrons the effect depends on the experimental cut parameters:

- Note that the coefficient of this logarithm vanishes when integrated over the whole spectrum.

\[
\Delta BR \times 10^{-6}
\]

\(s \ (\text{GeV}^2) \)

\(\Rightarrow \) Relative effect of this logarithm in the high-\(q^2 \) region much larger: we find \(-8\%\)!

- Our theory predictions correspond to a Super-B measurement not to the present Babar/Belle set-up see Huber, Hurth, Lunghi, arXiv:0807.1940 [hep-ph]
Further refinements:

Recent proposal: normalization to semileptonic $B \rightarrow X_u \ell \nu$ decay rate with the same cut reduces the impact of $1/m_b$ corrections in the high-q^2 region significantly. *Ligeti, Tackmann*, hep-ph/0707.1694

Hadronic invariant-mass cut is imposed in order to eliminate the background like $b \rightarrow c (\rightarrow se^+\nu)e^-\bar{\nu} = b \rightarrow se^+e^- +$ missing energy. *Lee, Stewart*, hep-ph/0511334

Third independent combination of Wilson coefficients in $\bar{B} \rightarrow X_s \ell^+\ell^-$ ($z = \cos\theta$)

\[
\frac{d^2\Gamma}{dq^2 \, dz} = \frac{3}{8} \left[(1 + z^2) H_T(q^2) + 2z H_A(q^2) + 2(1 - z^2) H_L(q^2) \right]
\]

\[
\frac{d\Gamma}{dq^2} = H_T(q^2) + H_L(q^2), \quad \frac{dA_{FB}}{dq^2} = \frac{3}{4} H_A(q^2)
\]
- Each of the brackets gets fully expanded in all couplings, but no overall expansion

\[
\frac{A_{FB}b_{\ell \ell}(q^2)}{\Gamma_u} / \frac{\Gamma_{b\ell \ell}(q^2)}{\Gamma_u}; \quad m_{b,\text{pole}} \leftrightarrow m_{b,\text{MS}} \leftrightarrow m_{b,1S}
\]

- Residual μ-dependence also for the Zero of the AFB a good estimate of the perturbative error

- Additional $O(5\%)$ uncertainty due to nonlocal power corrections $O(\alpha_s \Lambda/m_b)$

\[
A_{FB} \approx \left\{ -6 \text{ Re}(\tilde{C}^{\text{eff}}_{7,FB} \tilde{C}^{\ast \text{eff}}_{10,FB}) - 3\hat{s} \text{ Re}(\tilde{C}^{\text{eff}}_{9,FB} \tilde{C}^{\ast \text{eff}}_{10,FB}) + A_{FB}^{\text{brems}} \right\}
\]