Inert Model and the evolution of the Universe

I. Ginzburg, K. Kanishev, M. Krawczyk, D. Sokołowska

Abstract

We consider evolution of the Universe after EWSB leading to the **present Inert phase**, **containing a SM-like Higgs boson and scalar dark particles among them a Dark Matter candidate**. We address the question, if there is a possibility to have a sequence of the phase transitions instead of a single one leading directly from EW symmeric phase to the Inert one.

Model

2HDM potential for scalar doublets φ_S, φ_D :

$$V = -\frac{1}{2}(m_{11}^2 x_1 + m_{22}^2 x_2) + \frac{1}{2}(\lambda_1 x_1^2 + \lambda_2 x_2^2) + \lambda_3 x_1 x_2 + \lambda_4 x_3 x_3^{\dagger} + \frac{1}{2}(\lambda_5 x_3^2 + h.c),$$

$$x_1 = \varphi_S^{\dagger} \varphi_S, \ x_2 = \varphi_D^{\dagger} \varphi_D, \ x_3 = \varphi_S^{\dagger} \varphi_D.$$

V is invariant under a \mathbb{Z}_2 symmetry transformation:

 $\varphi_S \xrightarrow{Z_2} \varphi_S, \quad \varphi_D \xrightarrow{Z_2} -\varphi_D.$

The conservation of Z_2 parity gives the Dark Matter candidate from the Z_2 -odd doublet φ_D . We set Yukawa interaction to Model I (only φ_S couples to fermions).

Thermal evolution of V

The first order corrections to the potential due to the thermal evolution are given by the $\propto T^2$ contributions to the **mass terms** m_{ii}^2 , while λ_i of the quartic terms are unchanged:

$$\begin{split} m_{ii}^2(T) &= m_{ii}^2 - c_i T^2 \,, \quad i = 1,2 \\ c_1 &= \frac{3\lambda_1 + 2\lambda_3 + \lambda_4}{12} + \frac{3g^2 + g'^2}{32} + \frac{(g_t^2 + g_b^2)}{8} \,, \\ c_2 &= \frac{3\lambda_2 + 2\lambda_3 + \lambda_4}{12} + \frac{3g^2 + g'^2}{32} \,. \end{split}$$

g, g' – the EW gauge couplings, g_t, g_b – SM Yukawa couplings (fermionic contribution).

Extrema

The most general EWSB solution:

$$\langle \varphi_S \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_S \end{pmatrix}, \quad \langle \varphi_D \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} u \\ v_D \end{pmatrix}$$

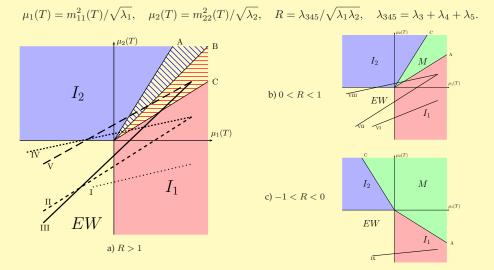
gives three neutral (u = 0) extrema:

$$I_1: v_D = 0, \quad v_S^2 = v^2 = m_{11}^2 / \lambda_1,$$

Inert extremum – SM-like Higgs *h* from φ_S and DM candidate *H* from φ_D .

$$I_2: v_S = 0, \ v_D^2 = v^2 = m_{22}^2 / \lambda_2,$$

Inert-like extremum – with massless fermions (Model I) and no candidate for DM.


$$\boldsymbol{M}: v_D, v_S \neq 0, v^2 = v_S^2 + v_D^2,$$

Mixed extremum – the standard 2HDM type of extremum.

The extremum with lowest energy is the ground state of the system – the vacuum.

Possible sequences leading to Inert phase today

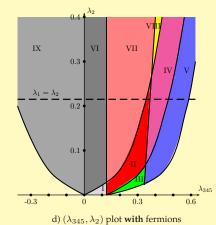
The possible sequences of phase transitions (different vacua) on (μ_1, μ_2) plane :

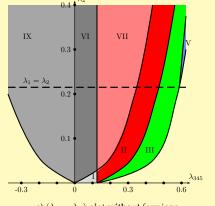
red hatch – I_1 vacuum and I_2 local minimum, blue hatch – I_2 vacuum and I_1 local minimum; $A: \mu_2(T) = \mu_1(T)R, \quad B: \mu_2(T) = \mu_1(T), \quad C: \mu_2(T) = \mu_1(T)R^{-1}.$

The possible sequences ("rays") that start in EW symmetric phase: $\mu_1(T), \mu_2(T) < 0$ and lead to the Inert phase (I_1 being the global minimum) today:

 $EW \rightarrow I_1$:

- rays I, VI, IX I_2 is not an extremum. For R < 0 ray IX is the only possible ray which corresponds to EW symmetry in the past
- rays II, VII *I*₂ is an extremum, but never was a (local) minimum
- ray III *I*² is a local minimum, but never was a global minimum


 $EW
ightarrow I_2
ightarrow I_1$:


- ray $IV I_2$ is not a local minimum, but was a global minimum in the past
- ray $\mathbf{V} I_2$ is a local minimum, it was a global minimum in the past

 $EW \to I_2 \to M \to I_1$:

• ray **VIII** – I_2 , M were global minima in the past

Example $(M_h = 120 \text{ GeV}, M_H = 60 \text{ GeV}, M_A = 68 \text{ GeV}, M_{H^{\pm}} = 110 \text{ GeV})$:

e) $(\lambda_{345}, \lambda_2)$ plot **without** fermions

The different sequences (rays I-IX) leading to Inert phase with **Dark Matter particle** *H*. Fermionic contribution important! For example, for $\lambda_2 \leq \lambda_1$ different type of vacuum in the past possible only if the fermionic part of c_1 included.

References

 I. Ginzburg, I. Ivanov, K. Kanishev, The Evolution of vacuum states and phase transitions in 2HDM during cooling of Universe, Phys.Rev.D81:085031,2010

[2] I. Ginzburg, K. Kanishev, M. Krawczyk, D. Sokołowska Evolution of the Universe to the present Inert phase, (in prep.)