

Physics Goals

- Measure $\left|V_{u b}\right|$
- Test QCD calculations of form factors

$$
\text { Measure } \mathcal{B}\left(q^{2}\right) \text { of } B \rightarrow\left(\pi^{ \pm} / \pi^{0} / \rho^{ \pm} / \rho^{0}\right) \ell \nu
$$

Data sample: 377 million $B \bar{B}$ pairs.

Physics Goals

- Measure $\left|V_{u b}\right|$
- Test QCD calculations of form factors

$$
\text { Measure } \mathcal{B}\left(q^{2}\right) \text { of } B \rightarrow\left(\pi^{ \pm} / \pi^{0} / \rho^{ \pm} / \rho^{0}\right) \ell \nu
$$

Data sample: 377 million $B \bar{B}$ pairs.

SIGNAL CANDIDATE SELECTION

NEURAL NET BACKGROUND SUPPRESSION

- Neural nets trained against each of 3 backgrounds, in each q^{2} bin
- Sample plots shown for $\mathrm{B}^{0} \rightarrow \pi^{-} \ell^{+} v$ in 3 selected q^{2} bins

Continuum background Jet-like events differ from isotropic B decays
$\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{u}} \mathrm{lv}$ background
Mostly at high q^{2},
hard to separate

$$
\begin{aligned}
& \mathrm{B}^{0} \rightarrow \pi^{-} \ell^{+} v \mathrm{~S} / \mathrm{B} \text { before } \mathrm{NN}=3 \% \\
& \mathrm{~B}^{0} \rightarrow \pi^{-} \ell^{+} v \mathrm{~S} / \mathrm{B} \text { after } \mathrm{NN}=12 \%
\end{aligned}
$$

binned ML fit in $m_{E S}, \Delta E$, and q^{2} for $B \rightarrow\left(\pi^{ \pm} / \pi^{0} / \rho^{ \pm} / \rho^{0}\right) \ell \nu$ simultaneously,

binned ML fit in $m_{\mathrm{ES}}, \Delta E$, and q^{2} for $B \rightarrow\left(\pi^{ \pm} / \pi^{0} / \rho^{ \pm} / \rho^{0}\right) \ell \nu$ simultaneously, with isospin constraint

$$
B^{0} \rightarrow \rho^{-} \ell^{+} \nu \text { in } 3 q^{2} \text { bins }
$$

Large $\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{u}}$ lv background is highly correlated with signal and must be fixed in the fit.

$B^{0} \rightarrow \rho^{-} \ell^{+} \nu$	1577 ± 130
$B^{+} \rightarrow \rho^{0} \ell^{+} \nu$	1970 ± 154
$B \rightarrow \rho \ell \nu$	3332 ± 286
$\mathcal{B}\left(B^{0} \rightarrow \rho^{-} \ell^{+} \nu\right)=\left(1.75 \pm 0.15_{\text {stat }} \pm 0.27_{\text {syst }}\right) \times 10^{-4}$	
	Smaller yield than $\mathrm{B} \rightarrow \pi l \nu$

Systematic errors	$B \rightarrow \pi \ell \nu$	$B \rightarrow \rho \ell \nu$
detector effects	3.2%	4.9%
K_{L} simulation	3.0%	7.5%
$B \rightarrow(\pi / \rho) \ell \nu$ FF	2.2%	9.4%
$B \rightarrow X_{u} \ell \nu$ bkgd.	0.9%	12.9%
$B \rightarrow X_{c} \ell \nu$ bkgd.	1.0%	1.5%
$q \bar{q}$ bkgd.	2.0%	4.0%
other effects	1.5%	2.5%
Total	5.0%	15.7%

ICHEP 24 July 2010
W. Wulsin, $\mathrm{B} \rightarrow(\pi / \rho) \ell v$ at BaBar

$$
\frac{d \Gamma\left(B^{0} \rightarrow \pi^{-} \ell^{+} \nu\right)}{d q^{2}}=\left.\left|V_{u b} \frac{G_{F}^{2}\left|p_{m}\right|^{3}}{24 \pi^{3}}\right| f_{+}\left(q^{2}\right)\right|^{2}
$$

- BCL and BGL expansions avoid ad hoc assumptions and are based on fundamental QCD concepts.
- We use BGL 3-parameter fit as default (consistent with BGL 2parameters).
q^{2} spectrum corrected for detector efficiency \& resolution, bremsstrahlung, and radiative effects

All 4 parameterizations agree with each other and are consistent with the data.
$B \rightarrow \pi \ell \nu$
$B \rightarrow \rho \ell \nu$

Calculation	$\operatorname{Prob}\left(\chi^{2}, \mathrm{ndf}\right)$
HPQCD	13%
PRD 73, 074502 (2006)	0.2%
ISGW2	$<10^{-5}$
PRD 52, 2783 (1995) LCSR PRD 71, 014015 (2005)	

Errors too large to distinguish between $\mathrm{B} \rightarrow \rho \ell \nu$ predictions.

FROM FULL q² RANGE

$\left|V_{u b}\right|=(2.99 \pm 0.35) \times 10^{-3} \quad$ HPQCD (1 point)
$\left|V_{u b}\right|=(2.92 \pm 0.37) \times 10^{-3} \quad$ FNAL/MILC (1 point)
$\left|V_{u b}\right|=(2.95 \pm 0.31) \times 10^{-3} \quad$ FNAL/MILC (4 points)

$$
\begin{aligned}
& \sigma(\text { data } B F)=3 \% \\
& \sigma\left(\text { data } q^{2} \text { shape }\right)=5 \% \\
& \sigma(\text { theory FF norm. })=8.5 \% \\
& \sigma_{\text {total }}=10.5 \%
\end{aligned}
$$

Errors reduced compared to $\left|\mathrm{V}_{\mathrm{ub}}\right|$ from partial q^{2} range

- Most precise branching fraction measurements:

$$
\begin{aligned}
& -\quad \mathrm{BF}\left(\mathrm{~B}^{0} \rightarrow \pi^{-} \ell^{+} v\right)=(1.41 \pm 0.05 \pm 0.07) \times 10^{-4} \quad \underset{~}{X} \\
& -\quad \mathrm{BF}\left(\mathrm{~B}^{0} \rightarrow \rho^{-} \ell^{+} v\right)=(1.75 \pm 0.15 \pm 0.27) \times 10^{-4}
\end{aligned}
$$

- Tests of q^{2} spectrum agreement with theoretical predictions.
- Determination of $\left|\mathrm{V}_{\mathrm{ub}}\right|$:
- LCSR, low $\left.q^{2}=\left(3.63 \pm 0.12^{+0.59}{ }_{-0.40}\right) \times 10^{-3}\right\rangle$
- HPQCD, high $q^{2}=\left(3.21 \pm 0.17^{+0.55}{ }_{-0.36}\right) \times 10^{-3} \triangle$
- FNAL/MILC, full $q^{2}=(2.95 \pm 0.31) \times 10^{-3}$

UT Fit Values
+ average exclusive
* average inclusive Global "all other" fit = $(3.48 \pm 0.16) \times 10^{-3}$

$$
\frac{d \Gamma\left(B^{0} \rightarrow \pi^{-} \ell^{+} \nu\right)}{d q^{2}}=\left|V_{u b}\right|^{2} \frac{G_{F}^{2}\left|\vec{p}_{\pi}\right|^{3}}{24 \pi^{3}}\left|f_{+}\left(q^{2}\right)\right|^{2}
$$

$$
\begin{aligned}
& f_{+}\left(q^{2}\right)= \frac{f_{+}(0)}{\left(1-q^{2} / m_{B^{*}}^{2}\right)\left(1-\alpha_{B K} q^{2} / m_{B^{*}}^{2}\right)} \\
& \text { Ball-Zwicky (BZ) } \\
& f_{+}\left(q^{2}\right)= f_{+}(0)\left[\frac{1}{1-q^{2} / m_{B^{*}}^{2}}\right. \\
&+\left.\frac{r_{B Z} q^{2} / m_{B^{*}}^{2}}{\left(1-q^{2} / m_{B^{*}}^{2}\right)\left(1-\alpha_{B Z} q^{2} / m_{B^{*}}^{2}\right)}\right]
\end{aligned}
$$

Bourrely, Caprini, Lellouch (BCL)

$$
\begin{array}{r}
f_{+}\left(q^{2}\right)=\frac{1}{1-q^{2} / m_{B^{*}}^{2}} \sum_{k=0}^{k_{\max }} b_{k}\left(q_{0}^{2}\right)\left[\left[z\left(q^{2}, q_{0}^{2}\right)\right]^{k}\right. \\
\left.-(-1)^{k-k_{\max }-1} \frac{k}{k_{\max }+1}\left[z\left(q^{2}, q_{0}^{2}\right)\right]^{k_{\max }+1}\right]
\end{array}
$$

Boyd, Grinstein, Lebed (BGL)

$$
\begin{aligned}
f_{+}\left(q^{2}\right)= & \frac{1}{\mathcal{P}\left(q^{2}\right) \phi\left(q^{2}, q_{0}^{2}\right)} \sum_{k=0}^{k_{\max }} a_{k}\left(q_{0}^{2}\right)\left[z\left(q^{2}, q_{0}^{2}\right)\right]^{k} \\
& z\left(q^{2}, q_{0}^{2}\right)=\frac{\sqrt{m_{+}^{2}-q^{2}}-\sqrt{m_{+}^{2}-q_{0}^{2}}}{\sqrt{m_{+}^{2}-q^{2}}+\sqrt{m_{+}^{2}-q_{0}^{2}}}
\end{aligned}
$$

Red-highlighted variables vary in the fit.

From combined 4-mode fit

	$B \rightarrow \pi \ell \nu$													
q^{2} range $\left(\mathrm{GeV}^{2}\right)$	$0-4$	$4-8$	$8-12$	$12-16$	$16-20$	>20	$0-26.4$							
Track efficiency	3.4	1.5	2.3	0.1	1.5	2.8	1.9							
Photon efficiency	0.1	1.4	1.0	4.6	2.8	0.3	1.8							
Lepton identification	3.8	1.6	1.9	1.8	1.9	3.0	1.8							
K_{L} efficiency	1.0	0.1	0.5	4.5	0.4	2.0	1.4							
K_{L} shower energy	0.1	0.1	0.1	0.8	0.9	3.8	0.7							
K_{L} spectrum	1.6	1.9	2.2	3.1	4.4	2.3	2.5							
$B \rightarrow \pi \ell \nu F F f_{+}$	0.5	0.5	0.5	0.6	1.0	1.0	0.6							
$B \rightarrow \rho \ell \nu F F A_{1}$	1.7	1.2	3.4	2.0	0.1	1.6	1.7							
$B \rightarrow \rho \ell \nu F F A_{2}$	1.3	0.8	2.6	1.0	0.1	0.4	1.1							
$B \rightarrow \rho \ell \nu F F V$	0.2	0.3	0.9	0.7	0.1	0.5	0.5							
$\mathcal{B}\left(B^{+} \rightarrow \omega \ell^{+} \nu\right)$	0.1	0.1	0.1	0.2	0.3	1.5	0.2							
$\mathcal{B}\left(B^{+} \rightarrow \eta \ell^{+} \nu\right)$	0.1	0.1	0.2	0.2	0.2	0.5	0.2							
$\mathcal{B}\left(B^{+} \rightarrow \eta^{\prime} \ell^{+} \nu\right)$	0.1	0.1	0.1	0.1	0.1	0.3	0.1							
$\mathcal{B}\left(B \rightarrow X_{u} \ell \nu\right)$	0.2	0.1	0.1	0.1	1.1	1.6	0.4							
$B \rightarrow X_{u} \ell \nu$ SF param.	0.4	0.1	0.2	0.2	0.5	4.2	0.7							
$B \rightarrow D \ell \nu \mathrm{FF} \rho_{D}^{2}$	0.2	0.1	0.5	0.3	0.2	0.7	0.3							
$B \rightarrow D^{*} \ell \nu \mathrm{FF} R_{1}$	0.1	0.4	0.8	0.6	0.3	0.6	0.5							
$B \rightarrow D^{*} \ell \nu \mathrm{FF} R_{2}$	0.5	0.2	0.1	0.2	0.1	0.4	0.2							
$B \rightarrow D^{*} \ell \nu \mathrm{FF} \rho_{D}^{2}$	0.7	0.2	0.6	0.8	0.4	1.1	0.6							
$\mathcal{B}(B \rightarrow D \ell \nu)$	0.2	0.2	0.3	0.4	0.5	0.5	0.3							
$\mathcal{B}\left(B \rightarrow D^{*} \ell \nu\right)$	0.4	0.1	0.3	0.3	0.3	0.7	0.3							
$\mathcal{B}\left(B \rightarrow D^{* *} \ell \nu\right)_{\text {narrow }}$	0.4	0.1	0.1	0.3	0.1	0.5	0.2							
$\mathcal{B}\left(B \rightarrow D^{* *} \ell \nu\right)_{\text {broad }}$	0.1	0.1	0.1	0.5	0.1	0.2	0.2							
Secondary leptons	0.5	0.2	0.3	0.2	0.2	0.7	0.3							
Continuum	5.3	1.0	2.6	1.8	3.1	6.1	2.0							
Bremsstrahlung	0.3	0.1	0.1	0.1	0.1	0.4	0.2							
Radiative corrections	0.5	0.1	0.1	0.2	0.2	0.6	0.3							
$N_{B \bar{B}}$	1.2	1.0	1.2	1.2	1.1	1.6	1.2							
B lifetimes	0.3	0.3	0.3	0.3	0.3	0.7	0.3							
$f_{ \pm} / f_{00}$	1.0	0.4	0.8	0.8	0.5	1.3	0.8							
Total syst. error	8.2	3.9	6.7	8.3	6.9	10.6	5.0							

$B \rightarrow \rho \ell \nu$				
q^{2} range $\left(\mathrm{GeV}^{2}\right)$	$0-8$	$8-16$	>16	$0-20.3$
Track efficiency	3.2	2.9	0.3	2.5
Photon efficiency	2.6	2.0	2.6	2.4
Lepton Identification	5.7	3.0	4.0	3.4
K_{L} efficiency	10.3	1.2	4.9	4.8
K_{L} shower energy	1.6	0.8	1.0	1.1
K_{L} spectrum	4.2	6.1	7.0	5.7
$B \rightarrow \pi \ell \nu$ FF f_{+}	0.1	0.1	0.7	0.2
$B \rightarrow \rho \ell \nu$ FF A_{1}	10.7	6.6	4.5	7.5
$B \rightarrow \rho \ell \nu$ FF A_{2}	8.5	3.8	0.8	4.7
$B \rightarrow \rho \ell \nu$ FF V	3.4	3.0	3.6	3.2
$\mathcal{B}\left(B^{+} \rightarrow \omega \ell^{+} \nu\right)$	0.7	0.7	3.4	1.2
$\mathcal{B}\left(B^{+} \rightarrow \eta \ell^{+} \nu\right)$	0.8	0.1	0.6	0.4
$\mathcal{B}\left(B^{+} \rightarrow \eta^{\prime} \ell^{+} \nu\right)$	0.8	0.5	1.2	0.7
$\mathcal{B}\left(B \rightarrow X_{u} \ell \nu\right)$	7.4	7.3	10.6	8.0
$B \rightarrow X_{u} \ell \nu \mathrm{SF}$ param.	11.9	7.6	12.8	10.0
$B \rightarrow D \ell \nu \mathrm{FF} \rho_{D}^{2}$	0.9	0.2	0.1	0.4
$B \rightarrow D^{*} \ell \nu \mathrm{FF} ~$	R_{1}	0.7	0.1	0.3
$B \rightarrow D^{*} \ell \nu \mathrm{FF} R_{2}$	1.7	0.1	0.2	0.3
$B \rightarrow D^{*} \ell \nu \mathrm{FF} \rho_{D}^{2}$	2.0	0.2	0.1	0.7
$\mathcal{B}(B \rightarrow D \ell \nu)$	1.6	0.3	0.1	0.7
$\mathcal{B}\left(B \rightarrow D^{*} \ell \nu\right)$	0.5	0.1	0.3	0.3
$\mathcal{B}\left(B \rightarrow D^{* *} \ell \nu\right)_{\text {narrow }}$	1.3	0.1	0.1	0.5
$\mathcal{B}\left(B \rightarrow D^{* *} \ell \nu\right)_{\text {broad }}$	0.7	0.1	0.1	0.3
Secondary leptons	1.5	0.1	0.1	0.5
Continuum	8.9	3.8	5.0	4.0
Bremsstrahlung	0.9	0.1	0.2	0.4
Radiative corrections	1.3	0.1	0.7	0.6
$N_{B \bar{B}}$	2.7	2.0	2.5	2.3
B lifetimes	1.5	0.4	0.4	0.7
$f_{ \pm} / f_{00}$	1.2	0.1	0.1	0.4
Total syst. error	26.1	16.1	21.3	15.7

