D* + jets in DIS and photoproduction

Andreas W. Jung (Fermilab) for the H1 collaboration

- Introduction
- D* (+jet) cross sections
- Extraction of $F_2^c(x,Q^2)$
- Combination of $F_2^c(x,Q^2)$
- Conclusions
D* production: boson-gluon-fusion

Dominant process for charm-production in ep -scattering:

\[\gamma (q) \rightarrow c \quad \text{E}(e)=27.5 \text{ GeV} \]

\[e \rightarrow k \quad k' \]

\[\text{E}(p)=920 \text{ GeV} \]

\[p \rightarrow c \quad c \quad X \]

Kinematic at \(\sqrt{s} \approx 320 \text{ GeV} \):

- **Photon Virtuality:**
 \[Q^2 = -q^2 = - (k - k')^2 \]

 \(Q^2 \sim 0 \text{ GeV}^2 \): Photoproduction

 \(Q^2 > 2 \text{ GeV}^2 \): Deep Inelastic Scattering

- **Inelasticity:**
 \[y = \frac{q \cdot p}{k \cdot p} \]

- **Bjorken x:**
 \[x := \frac{Q^2}{2(p \cdot q)} \]

- **D* via Fragmentation:**
 - **Pseudorapidity:**
 \[\eta = \ln \tan \left(\frac{\theta}{2} \right) \]
 - **Transverse momentum:**
 \[p_T \]
 - **Elasticity:**
 \[z = \frac{E(D^*) - p_z(D^*)}{2 \cdot y E_e} \]

Study production mechanism:

- \(Q^2, m_c^2 \) or \(p_T^2 \) provides a hard scale for pQCD

- Test of heavy flavor treatment in pQCD

- Parton densities ("gluon structure") in the proton

\[\rightarrow \text{multiscale problem} \]

\[\rightarrow \text{test universality} \]
Theoretical models

Factorisation ansatz:

\[
d\sigma = \sum_{i,j,k} f_j^B(x_2, \mu_f) \otimes d\hat{\sigma}_{i,j\to k,X}(\mu_f) \otimes D^H_k(z, \mu_f)
\]

- **Parton density functions (PDFs):** from global fits to data
- **Matrix element:** calculable to different orders of \(\alpha_s\)
- **Fragmentation function:** from data

Many approaches on the market:

- **LO(\(\alpha_s\)) + PS:**
 - collinear factorization
 - collinear factorization
 - \(k_T\) factorization
 - (all MCs use Lund fragmentation (uds) and Bowler (c))
 - PYTHIA (DGLAP, massive/massless)
 - RAPGAP (DGLAP, massive)
 - CASCADE (CCFM, massive)

- **NLO(\(\alpha_s^2\)):**
 - Collinear factorization
 - HVQDIS (DGLAP, FFNS, massive, independent Fragmentation)
 - ZMVFNS (DGLAP, ZM-VFNS, massless, KKKS08)

- **NLO(\(\alpha_s^2\)) + PS:**
 - collinear factorization
 - MC@NLO (DGLAP, massive, cluster fragmentation)
- Full HERA II sample ($L = 93\text{ pb}^{-1}$)
- Total systematic error: ~9%
- Phase Space cuts:
 \begin{align*}
 p_T(D^*) &> 2.1\text{ GeV} & |\eta(D^*)| &< 1.5 \\
 p_T(\text{jet}) &> 3.5\text{ GeV} & |\eta(\text{jet})| &< 1.5 \\
 |\eta(D^*-\text{jet})| &< 1.5 \\
 -1.5 &< \eta(\text{other-jet}) < 2.9 \\
 \end{align*}
 (other-jet is jet with highest $p_T(\text{jet})$ other than D^*-jet)

- Comparison to MC@NLO (CTEQ66)
- Uncertainty band from scale variations
 - MC@NLO too low in normalization
 - Shape fits quite well

A. Jung
- Longitudinal momentum fraction of the photon carried by the jets:
 - At low x_γ significant contribution from resolved (quasi-real) photons:
 → Low x_γ sensitive to the photon PDF
 - High x_γ: direct processes well described by either MCs & MC@NLO
 - Low x_γ: resolved processes not described by any model, but better by MCs

\[
x_{\gamma} = \frac{\sum_j (E - p_z)_j + \sum_k (E - p_z)_k}{2yE_e}
\]
- M_X invariant mass of the remnant from photon & proton side

M_X not very well described: At high x_γ shape reasonably well described but at low x_γ the normalization is too low
D* production: medium Q^2

Full HERAII statistics: $L = 347 \text{ pb}^{-1}$ yields $N(D^*) \sim 24705$

- Total systematic error is 7.6%!
- Well understood detector allows increased Phase Space:

 \[
 p_T(D^*) > 1.25 \text{ GeV and } |\eta(D^*)| < 1.8
 \]

- Data are reasonable described by HVQDIS

Shape comparison via normalized ratio:

\[
R = \frac{1/\sigma_{\text{data}}^{\text{tot,vis}} \cdot \frac{d\sigma_{\text{calc}}}{dY}}{1/\sigma_{\text{calc}}^{\text{tot,vis}} \cdot \frac{d\sigma_{\text{data}}}{dY}}
\]
Theory uncertainty includes scale, mass & fragmentation uncertainty

- HVQDIS describes nicely the Q^2 dependency
- Slope in x not very well reproduced!
- Double differential $y-Q^2$ has also been measured, can be used to extract $F_2^c(x,Q^2)$
For comparison with ZM-VFNS: Cut in photon-proton rest frame: $p_T^{*,(D^*)} > 2$ GeV

- ZM-VFNS: Theoretical uncertainty taken from scale variations

- Reasonable description of Q^2 by both NLO calculations, HVQDIS is better in shape

- For x ZM-VFNS predicts completely different slope & fails especially at large x

Remark: Only the most recent PDF sets consider mass effects!
D* production: high Q^2

- Full HERAII statistics ($L = 351 \text{ pb}^{-1}$)
- Total systematic error: 12%

Phase Space:
- $p_T(D^*) > 1.5 \text{ GeV}$ and $|\eta(D^*)| < 1.5$

- MCs fail to describe differential D^* cross sections
- HVQDIS describes the data quite reasonably
Massive FFNS describes cross section over three orders of magnitude!

Massless ZM-VFNS fails to describe high Q^2 region.

D*+jets in DIS and photoproduction

A. Jung
Experimental method to measure $F_2^c(x,Q^2)$:

- Measured cross sections

\[
F_2^c \text{ exp} (x, Q^2) = \frac{\sigma_{\text{vis}}^\text{exp} (y, Q^2)}{\sigma_{\text{vis}}^\text{theo} (y, Q^2)} \cdot F_2^c \text{ full} (x, Q^2)
\]

Using NLO (FFNS)

- Extrapolation uncertainty from variations of scale, mass, fragmentation
- At medium Q^2 measured D^* cross section covers only 30% if $p_T(D^*) > 1.5$ GeV & $|\eta(D^*)| < 1.5$

Only at high y: 2-3% for this measurement negligible
Reasonable agreement between two experimental methods
H1PDF2009 overall slightly above data
Within uncertainty data described by MSTW, ABKM
Comparison of $F_2^c(x,Q^2)$ results

- HVQDIS using different proton PDFs describes the F_2^c data reasonable
- Nice agreement between different experimental methods & experiments
- Details on H1 VTX → (1169, P. Thompson)
- Gain in precision by combining data within one experiment and by combining with ZEUS
Combine D* and lifetime results:
- Gain in precision because of different systematic uncertainties
- Correlation of Systematic uncertainties taken into account
- Typical gain ~25%:

Data are reasonable described
- At low Q^2 data can discriminate between models
- For HERA combined results:
 → see Talk by M. Corradi (1159)
Conclusions

Full H1 HERA II data sample analyzed for photoproduction, medium & high Q^2 D* production:

- Photoproduction: MCs & MC@NLO dont describe resolved photon domain
- DIS:
 - HVQDIS describes Data reasonably well
 - ZM-VFNS not able to describe the D* data

Extracted $F_2^c(x,Q^2)$ from D* data & combined with life-time data:

- Gain in precision via combination of data
- Reasonably described by different calculations
The HERA Collider (1994-2007)

-- Two multi-purpose detectors: H1 & Zeus
-- Collected Luminosity: HERAI + HERAII ~ 0.5 fb⁻¹
Event selection & techniques

- Fully reconstructed D*: total BR of 2.57%
- Inclusive method using lifetime of charmed mesons
 → More details: Talk by P. Thompson

- **Untagged electron:** $Q^2 \sim 0 \text{ GeV}^2$
 Track based final states:
 - **H1 Fast Track Trigger**

- **Scattered electron in backward calorimeter:** $5 < Q^2 < 100 \text{ GeV}^2$
- OR in main calorimeter: $100 < Q^2 < 1000 \text{ GeV}^2$

$$D^{*\pm} \rightarrow D^0 \pi^\pm_{\text{slow}} \rightarrow (K^\mp \pi^\mp) \pi^\pm_{\text{slow}}$$

A. Jung

D*+jets in DIS and photoproduction
Theoretical models

Factorisation ansatz:

\[d\sigma = \sum_{i,j,k} f^B_{ij}(x_2, \mu_f) \otimes d\hat{\sigma}_{i,j\rightarrow k} X(\mu_f) \otimes D^H_k(z, \mu_f) \]

- Parton density functions (PDFs): from global fits to data
- Matrix element: calculable to different orders of \(\alpha_s \)
- Fragmentation function: from data

Many approaches on the market:

- NLO(\(\alpha_s^2 \)):
 - HVQDIS (FFNS, massive)
 - vs.
 - ZMVFNS (ZM-VFNS, massless)

A. Jung

D*+jets in DIS and photoproduction
If a hard scale is involved:
- jet- & hemisphere method agree well
- FF also agrees with ZEUS and LEP data

If no hard scale is involved:
- discrepancy at charm production
 threshold in QCD models
- much harder fragmentation

More information:
http://arxiv.org/abs/0808.1003v2

Fragmentation uncertainty from FF values
for charm production:

<table>
<thead>
<tr>
<th></th>
<th>HVQDIS:</th>
<th>CASCADE:</th>
<th>RAPGAP:</th>
</tr>
</thead>
<tbody>
<tr>
<td>at-threshold</td>
<td>$\alpha = 6.0^{+1.0}_{-0.8}$</td>
<td>$\alpha = 8.2 \pm 1.1$</td>
<td>$8.7 < \alpha < 12.2$</td>
</tr>
<tr>
<td>above-threshold</td>
<td>$\alpha = 3.3 \pm 0.4$</td>
<td>$\alpha = 4.6 \pm 0.6$</td>
<td>$3.9 < \alpha < 5.0$</td>
</tr>
</tbody>
</table>

Threshold position from \hat{s} (cms energy of
hard subprocess):
- 70 ± 20 GeV2
- Parameters of the MCs & MC@NLO:

<table>
<thead>
<tr>
<th>generator</th>
<th>proton (u)pdfs</th>
<th>photon pdfs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pythia massive</td>
<td>CTEQ 6M NLO</td>
<td>SAS 2D LO</td>
</tr>
<tr>
<td>Pythia massless</td>
<td>CTEQ 6L LO</td>
<td>GRV-G LO</td>
</tr>
<tr>
<td>Cascade</td>
<td>Set A0</td>
<td>–</td>
</tr>
<tr>
<td>MC@NLO</td>
<td>CTEQ 6.6</td>
<td>GRV</td>
</tr>
</tbody>
</table>

- High x_γ: direct processes well described by MCs
- Low x_γ: resolved processes not described by any model, especially at high M_X
In general described by PYTHIA (CTEQ6) and CASCADE (A0)
As seen in x also in y ZM-VFNS fails completely!
HVQDIS overshoots at low y
z(D*) reasonable described by ZM-VFNS & HVQDIS
Without the additional $p_T(D^*)$ cut HVQDIS fails to describe $z(D^*)$
In general $\eta(D^*)-p_T(D^*)$ cross section reasonable described by HVQDIS

Forward direction: HVQDIS undershoots data located at low $p_T(D^*)$
Massive FFNS describes cross sections reasonably well.

MCs predict different slopes and fail completely to predict the Q^2 slope.