Charm and Beauty Production from Secondary Vertexing at HERA

Paul Thompson (Birmingham)

for the H1 and ZEUS Collaborations

- Motivation and analysis method
- Heavy Flavour jets in photoproduction
- Heavy Flavour jets in Deep Inelastic Scattering
- Contribution of Heavy Flavours to proton structure

ICHEP 2010, Paris 22nd-28th July, 2010
Heavy Flavour Analyses

- In total ~500pb\(^{-1}\) of high energy data collected per experiment
- luminosity upgrade in 2001
- detectors adjusted
- ZEUS: silicon micro vertex detector

Many heavy flavour final analyses on full HERA I+II data. Working on publication of remaining preliminaries and combination of results
Production of Heavy Quarks

Contribution of quasi-real photons at low Q^2

Direct γ

Resolved γ (flavour excitation)

$Q^2 < 1 \text{ GeV}^2$ Photoproduction, $Q^2 > 1 \text{ GeV}^2$ DIS

Predominantly via boson gluon fusion

Test of perturbative QCD:

multi-scale problem (M, Q, p_T)

Directly sensitive to gluon density in the proton (PDFs)
Heavy Quark Production

Number of theoretical approaches:

Massless (Zero Mass), massive (Fixed Flavour) and general mass (GM) flavour number schemes (combination of massless/massive should provide best theoretical model).

QCD Calculations:

- Fixed order - massive FFNS NLO(α_s^2) (FMNR, HVQDIS)
- GM-VFNS PDFs - used in latest PDF fits
 - MSTW08 to NLO (α_s^2) and NNLO (α_s^3)
 - CTEQ 6.6 to NLO (α_s)

Monte-Carlo: LO (α_s) + Parton shower:

Collinear factorisation, DGLAP (PYTHIA, RAPGAP)
HERA I+II result:

- fraction of total DIS cross section from charm and beauty
- large charm fraction (~30%). Has influence on PDFs!
- small beauty fraction (~%) (lower at low Q^2)
- mass thresholds visible
- good description by NNLO QCD
Tagging Heavy Quarks

Heavy quarks rarely produced, use properties of beauty hadrons:

- lifetime and mass
 - reconstruction of a secondary vertex
 - decay length and mass of tracks from secondary vertex
 - impact parameter

Vertex method allows measurement of all tracks to low p_T – increase statistics and reduce extrapolations to full phase space. Can compare with other methods semi-leptonic (1163 Juengst), reconstruction of charmed meson decays (1160 Jung, 1162 Roloff)
H1 and ZEUS vertex measurements

<table>
<thead>
<tr>
<th>H1</th>
<th>ZEUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Inclusive charm and beauty in DIS</td>
<td>• Beauty dijets in Photoproduction</td>
</tr>
<tr>
<td>• Charm and beauty jets in DIS DESY 10-083</td>
<td>• Beauty jets in DIS and F_{2}^{bb}</td>
</tr>
<tr>
<td></td>
<td>ZEUS-prel-10-004</td>
</tr>
</tbody>
</table>

Methods to discriminate heavy flavours from light quarks and to disentangle c from b are very similar for H1 and ZEUS

Highlight the important features here...
Flavour Tagging - secondary vertex

- Use all tracks ("inclusive") with hits in silicon detectors $p_T > 0.3(0.5)$ GeV H1(ZEUS)
- 2D(3D) hits H1(ZEUS). Calculate 2D secondary vertex decay length and decay length significance $S_L = L/\sigma(L)$
- Sign of vertex given w.r.t jet axis
- Use also signed impact parameter δ of individual tracks

\[\alpha < 90^\circ \rightarrow \delta = +|\delta| \]
\[\alpha > 90^\circ \rightarrow \delta = -|\delta| \]
Flavour Separation

Significance \(S = \frac{\delta}{\sigma(\delta)} \)

For >2 tracks use NN

\(S_1 \) highest \(|S| \)
\(S_2 \) 2nd highest \(|S| \)

Charm and beauty asymm. due to lifetime

Light flavours mostly symmetric

Photoproduction background small

\(S_1 \), \(S_2 \), \(S_3 \), \(S_L \) and number of silicon tracks
Fitting Flavour Fractions

Reduce contribution of lights by using “mirror image” i.e. subtract negative bins from positive.

ZEUS fit S_L in bins of M_{VTX}, H1 fit S_1, S_2 and NN output

Perform l,c,b fits in bins of e.g. p_T^{jet} or x,Q^2 to extract F_2^{bb}.

ZEUS-prel-09-005

Lights suppressed

b dominates

ZEUS (prel.) 120 pb$^{-1}$ PYTHIA (b+c+fl) PYTHIA (b) PYTHIA (c) PYTHIA (fl)
Photoproduction b Dijets (ZEUS)

$Q^2<1$ GeV2, $P_{T^{Jet}}>7(6)$ GeV, $-1.6 < \eta^{Jet}<1.3$

Beauty jet cross section vs $p_{T^{Jet}}$, η^{Jet}

Well described by (massive) NLO QCD

Agreement found with measurements from muon tagging (864 Geiser)
Beauty Jets In DIS (H1)

Q2 > 6 GeV², P_T^jet > 6 GeV, -1 < η^jet < 1.5

Beauty jet cross sections vs E_T^jet and η^jet

Well described by (massive) NLO QCD

Good description (as for H1 γp analysis hep-ex/0605016)

DESY 10-083
Beauty jet cross sections vs Q^2 and x. Agreement with NLO QCD, although QCD lower at low Q^2 and low x
Charm Jets In DIS (H1)

$Q^2 > 6 \text{ GeV}^2$, $P_T^{\text{jet}} > 6 \text{ GeV}$, $-1 < \eta^{\text{jet}} < 1.5$

Charm jet cross sections vs E_T^{jet} and η^{jet}

Sensitivity to scale choice. Reasonable description with scale choice.

DESY 10-083
Measurement of F_{2}^{cc} and F_{2}^{bb}

$$F_{2,\text{meas}}^{b}(x, Q^{2}) = \frac{\sigma_{\text{meas},i}}{\sigma_{\text{theo},i}} \times F_{2,\text{theo}}^{b}(x, Q^{2})$$

- Extraction of inclusive structure functions (F_{L} is small)
- Double differential cross section
- Use HVQDIS to calculate theoretical predictions
- Extrapolation to full phase space small for beauty
- Larger for charm, but reduced compared to exclusive methods because of low p_T track acceptance
Measurement of F_2^{bb}

- Beauty structure function versus Q^2 for fixed x
- Vertex methods between H1 and ZEUS agree
- Agreement also found with semi-leptonic analyses
- NNLO predictions available
- Some differences between theories
- Data well described
Measurement of F_2^{cc}

- Charm structure function vs Q^2 for fixed x
- Higher precision tests theory
- Differences between MSTW NNLO and NLO predictions for charm. NNLO somewhat better description than NLO
- CTEQ NLO describes data
- Data being used to complement D meson and semi-leptonic measurements in combination of HERA data (1159 Corradi)
Summary

- Heavy Flavour production at HERA is a vital testing ground for perturbative QCD
- Vertex detectors are a powerful tool to extract heavy flavour cross sections
- In general a good description is provided by pQCD
- The vertexing method allows to make measurements of the contribution of heavy flavours to the proton structure function. Charm data precision provides constraint for theory. Beauty well described.
- Better discrimination to come from combination of results.
Extra Slides
Flavour Tagging - Vertex Detectors

H1 and ZEUS vertex detectors:

- Multi-layered single and double sided silicon microstrip detectors
- Combine precise spatial information from vertex detectors with tracks from central drift chambers
- Resolution of impact parameter in transverse plane < 100 μm
Fitting Flavour Fractions

ZEUS

Example of ZEUS 2D M_{VTX} and S_L fitting for DIS
Measurement of F_2^{bb}

Comparison of vertexing results with semi-leptonic
Comparison with Muon Tagged Data

- Extrapolate muon data to full phase space (small uncertainty)
- H1 and ZEUS data from muon tagging lie systematically above vertex data at either high or low Q^2