Search for Quirks and Hidden Valleys at the Tevatron

Yunhe Xie Fermilab

On behalf of D0 collaboration

ICHEP@Paris July 24, 2010

- Tevatron performs well
- Large amount of data already in the can
- Keep searching for new physics beyond Standard Model
- Will cover in my talk two unique signatures:
 - quirks
 - hidden valley models (lepton-jet signature)
- Very first exploration of those models at hadron colliders
- Analysis done with data up to 5.8fb⁻¹

Tevatron @Fermilab

- Was the most energetic collider in the world until recently
- @ √s=1.96 TeV

- Delivered 9fb⁻¹
- Recorded 8fb⁻¹/experiment
- Deliver rate ~ 2fb⁻¹ /year now
- Expect II~I2fb⁻¹ by end of 2011

D0

- Multi-purpose detector
 - Tracking system: primary vertex, track, p_T, dE/dx, etc..
 - Calorimeter: E, E_T,
 - Muon system: muon detection

Quirks

- * One possible minimal extension of the SM: new fermions are introduced Q and \overline{Q} : quirks
- Two parameters: m_Q and Λ (new Gauge coupling)
- Pair-produced if Q carries some SM charges (e only, no SM color)
- Bounded state when $\Lambda << m_Q \cong 0.1-1$ TeV
- Unique signature: a high E_T track with large dE/dx, a jet and E_T aligned with track

- Background estimated with data
 - Lepton background (e and μ); multi-jet background; noise-like background
- Signal simulated with MadGraph+PYTHIA processed with GEANT3 D0 detector simulation
 - dE/dx is calculated separately for quirks with detector resolutions and instrumental noise from data

- Find no signs of new physics
- Set an upper limits on the quirk production cross section for various quirk masses at 95% C.L.
- Exclude charged electro-weakly interacting quirks with mass up to 107 GeV at 95% C.L.
- This is the first experimental search for quirks

7

* Large Missing Transverse Energy (E_T) from the LSP in the hidden sector

Hidden Valleys -- II

- Search in three channels: ee, eµ, and µµ
- Background estimated with data
 - Multi-jet events (all three channels) and photon conversions for electron I-jet (ee only)
 - Control region: low MET, non-isolated region, extrapolate to signal region
- Signal simulated with MadGraph+PYTHIA processed with GEANT3 D0 detector simulation

Hidden Valleys -- III

- Consistent with SM prediction
- * Set an upper limit on the production cross section of SUSY events decaying into 2 l-jets with E_T as a function of m(γ_D)

Hidden Valleys -- IV

- Hidden Valley models -- Dark photons:
 - detector signature:
 - α photon (γ)
 - * a pair of collimated leptons from the dark photon (γ_D)
 - Large MET (E_T) from the LSP in the hidden sector
- Backgrounds estimated from data:
 - ♦ QCD + γ , W→e/µv + γ , W→τv→3h[±]v + γ

ICHEP@Paris July 24, 2010

Conclusion

- Tevatron performs well
- Experiments continue to search for evidence of new physics beyond SM
- Two analysis were presented with unique signatures
- Exploring new models/signatures with good knowledge of detectors and data
- Keep updating results with more data
 - 9fb⁻¹ has been delivered with 8fb⁻¹ recorded
 - II-I2fb⁻¹ expected by the end of 2011
- Stay tuned for more coming new results

Back-up

Massive Long Lived Particles

D0 (CMSP) results (Ifb⁻¹)

14

CDF (Champs) results (Ifb⁻¹)

Y. Xie

