
HSF & PROFILERS
Giulio Eulisse

SETTING
➤ In Naples workshop we agreed that some common effort on code profilers would be good.

➤ Many tools, lot sparse expertise over very long time. Time to get together.

➤ This is to kickstart discussions, share ideas, define usecases and the way forward.

➤ Currently AFAIK there is 0 FTE associated to this and all the work is done on a voluntary basis
or as part of our daily duty cycle.

�2

PROFILING: THE GIULIO DIAGRAM

Collect profiling data

Correlate with
sourcecode

Filter, sort, aggregate

Publish / present
reports

Improve code

Compare with
baseline

�3

IMHO the goal is improve
code, not to characterise

machine behaviour.

PROFILING: THE GIULIO DIAGRAM

Collect profiling data

Correlate with
sourcecode

Filter, sort, aggregate

Publish / present
reports

Improve code

Compare with
baseline

�4

Correlating profiles with
source code is fundamental.
Profiling is an expert job.

PROFILING: THE GIULIO DIAGRAM

Collect profiling data

Correlate with
sourcecode

Filter, sort, aggregate

Publish / present
reports

Improve code

Compare with
baseline

�5

The ability to easily share
reports is key for success.
Expertise on our code is

sparse.

PROFILING: THE GIULIO DIAGRAM

Collect profiling data

Correlate with
sourcecode

Filter, sort, aggregate

Publish / present
reports

Improve code

Compare with
baseline

�6

Comparing reports is
IMHO the most difficult

part of the whole business.

COLLECTING PROFILE DATA
Key is diversity. Many profiling tools, all with their strengths and usecases. It makes absolutely no sense to try to have one
to rule them all (unless you want to be OSX only, then you use Instruments).

➤ Hardware counters ⇒ perf, oprofile, Instruments (OSX only), nvprof (GPU)

➤ Sampling profilers ⇒ Google Perf Tools, Cachegrind, IgProf, cProfile (Python), pprof (Go)

➤ Memory profilers ⇒ Valgrind, IgProf, Google Perf Tools, pprof

➤ Instrumentation toolkits ⇒ gprof, dtrace, IgTrace, Pin, go tool trace (Go)

➤ All in one suites ⇒ Instruments, Chrome Profiler (javascript), VTune

Non exhaustive list: https://en.wikipedia.org/wiki/List_of_performance_analysis_tools

What can we do together here?

➤ Document and present the various tools, their strengths and usecases. Make them easily accessible where not the case.

➤ Move everything to Mac and just adopt Instruments. ;-)

➤ Move everything to go ;-) (kudos to Sebastien for some of the links)

�7

https://en.wikipedia.org/wiki/List_of_performance_analysis_tools

STORING PROFILE DATA
Can we model profile data warehouse? Storing profile data is a challenging task, however I personally think here it's possible to
find a common description in terms of profile events.

➤ Measure. What and how much a given event counts.

➤ Position inside the source code. Where the event happens. In which line of code, in which library.

➤ Stack-trace. How we got there.

➤ State. E.g. arguments to each function in the stacktrace.

➤ Time. When a given event happened.

➤ Metadata. What user produced the profile, on what machine, for what workload.

Questions:

➤ Can we agree on a common way to model profile data?

➤ Is there already a viable backend available to store profile data?

➤ If not, can we get together and have one deployed "as a service"? Can we have it support "common" profile reports?

➤ Do we want to work together on it?

�8

ANALYSING AND VISUALISING PROFILE DATA
Analysis

All profilers provide ways to group and filter their data. Can we abstract those?

E.g.:

➤ Group together all the contributions from libc.

➤ Split the report based on the value of a given function argument.

Visualisation

Very often profilers have powerful tools to visualise a single profile. Rarely they can be used to compare two
reports. Even more rarely this is provided as web based multiuser service.

Question

If we really managed to agree on how to store the data, why don't we work together also on the presentation
layer for it?

�9

VISION
Like Google Analytics, but for profile data

�10

VISION
Like CodeCov, but for profile data

�11

VISION
Like Instruments, but for the web, OpenSource and not limited to OSX.

�12

Maybe contribute to existing projects?

VISION

Of course as much as we like writing cool GUIs we should try to reuse opensource components.

E.g. catapult: https://github.com/catapult-project/catapult

UNREALISED VISION
IgProf.io: nodejs + React rewrite of the IgProf GUI. Still very far from being a realised
vision, but maybe a viable starting point?

IgProf at FOSDEM 2015: https://archive.fosdem.org/2015/schedule/event/igprof_the_ignominous_profiler/ �14

https://github.com/igprof/igprof-io

