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Introduction

I Who am I?
I MINOS, T2K, Minerva, DUNE; Neutrino-nucleus interaction measurement and

fitting
I Which neutrino experiments use/don’t use unfolding and why?
I What have we done in the past?
I What are we doing now?
I What are we likely to do in the future?
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Oscillation analyses don’t (explicitly) use unfolding

I Measuring small number of parameters in a “well-known” model.
I But maybe future experiments will want to map out P(να → νβ), say
I Implicit unfolding in “beam matrix” methods
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Unfolding is widely used in neutrino interaction analyses

𝜈

I Approximate “effective” models used at each stage
I Want to measure identity and kinematics of final-state particles
I Renewed interest because of importance to oscillation analyses
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Some common features of neutrino interaction measurements
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I Measure flux-integrated distributions of kinematic variables to distinguish
widely-varying models

I Often systematics-limited
I Largest systematic often flux: strong positive correlations

◦◦•◦• 5



What we’ve done in the past: D’Agostini, mostly

I O(1) iteration of D’Agostini on background-subtracted data
I “Unfolding error”: 2nd iteration minus first
I Choice of Nit: warp MC to look like data. Iterate until bin contents “close” to

truth
I Unfold using different models; add to systematic error
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What we’ve done in the past has some shortcomings

I Background subtraction breaks Poisson assumption in D’Agostini method
I Method of choosing Nit is ad hoc, doesn’t consider stat error
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What we’re doing now
I Providing unregularized results alongside Tikhonov-regularized ones (T2K)

I More details in Stephen Dolan’s talk
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I More careful checks with covariance matrix chi2 on data-driven warped
distributions (Minerva)
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MINERνA approach to D’Agostini unfolding: example

Trung Le, Fermilab JETP seminar, Sep 21 2018

𝜈μ
μ+

π-
+0 or more other particles

I “Feed-down” means wider migration matrix than usual. Procedure similar for all
variables

I Reweight MC to look like data: unfold this warped fake data
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MINERνA approach to D’Agostini unfolding: example

Trung Le, Fermilab JETP seminar, Sep 21 2018

I “Feed-down” means wider migration matrix than usual. Procedure similar for all
variables

I Reweight MC to look like data: unfold this warped fake data
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Two checks on number of iterations

1. When does the unfolded distribution closely approximate the (warped) truth?
2. When is the χ2/dof ∼ 1, averaged over many Poisson throws?
3. In this case, χ2/dof ∼ 1 with bins removed
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What we might do in the future
I L-curve-alike for D’Agostini unfolding: compare Nit result to infinite

iterations result. (More details from Stephen Dolan)
I Implement D’Agostini without background subtraction
I Forward folding: provide tools to compare theoretical models

directly to reconstructed (smeared) data. Challenges:
I Publishing systematics
I Making the response matrix model independent
I Long-term sustainability (what if the tools are unmaintained?)8 Future Improvements MICROBOONE-NOTE-1045-PUB

 [GeV]reco
µ

p
0 0.5 1 1.5 2 2.5

/G
eV

]
2

 c
m

-3
8

 [1
0

re
co

µ
/d

p
σd

0

0.5

1

1.5 GENIE Default + Emp. MEC (Stat. Unc.)
GENIE Alternative (Stat. Unc.)

 Syst. Unc.)⊕Measured (Stat. 

MicroBooNE Preliminary

(a)

)reco
µθcos(

1− 0.5− 0 0.5 1

]2
 c

m
-3

8
) 

[1
0

re
co

µθ
/d

co
s(

σd

0

0.5

1

1.5

2

2.5 GENIE Default + Emp. MEC (Stat. Unc.)
GENIE Alternative (Stat. Unc.)

 Syst. Unc.)⊕Measured (Stat. 

MicroBooNE Preliminary

(b)

Figure 19: νµ CC inclusive differential cross section on argon as a function of the
reconstructed muon momentum and cosine of the muon polar angle. The black data
points show the data extracted cross section (using default Genie for background and
efficiency estimation), while the green and blue curves shows the MC predicted cross
section from Genie default and alternative model sets respectively. The data cross
sections contain flux, cross section modeling and detector systematic uncertainties.
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Fits to strongly-correlated data 1

8 Future Improvements MICROBOONE-NOTE-1045-PUB
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(a) Fractional systematic covariance matrix
for the pµ bins.
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(b) Fractional systematic covariance matrix
for the cos θ bins.
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(c) Systematic correlation matrix for the pµ
bins.
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(d) Systematic correlation matrix for the cos θ
bins.

Figure 20: The total systematic error fractional covariance matrices (upper plots) and
correlation matrices (bottom plots) for both the pµ bins and for the cos θ bins.
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MICROBOONE-NOTE-1045-PUB T2K, Phys Rev D 87, 092003

I Neutrino interaction data strongly positively correlated by flux uncertainties
I Well known that in such cases, the best fit can be well outside the data points
I “Peelle’s Pertinent Puzzle” in nuclear physics. Several proposed

interpretations/solutions: “International evaluation of neutron cross-section standards”, IAEA (2007)
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Fits to strongly-correlated data 2

Some variable
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I Empirically, y → log(y), ameliorates the issue, ⇒ log-normal uncertainties on
y(?)
“Box-Cox transformation for resolving the Peelle’s Pertinent Puzzle in curve fitting”, Oh and Seo 2004

I Is this the best way to communicate our systematics?
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Some outstanding questions

I Can we unfold and quantify bias s.t. it’s small enough to not matter?
I How can we adapt unfolding techniques from the literature to work with the

multi-universe/multisim method used by Minerva and MicroBooNE?
I Evaluating unfolding bias by comparing to a model “warped like the data”:

what’s the range of validity?
I How do we assign systematic uncertainties to “the unfolding technique” without

double-counting?
I How do we deal with PPP? Or, what’s the best way to preserve the features of

our detailed systematic error estimates in a way that’s digestible to users
(theorists, other experiments)?
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Backup slides
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MINERνA ν CC0pi χ2 vs number of iterations

I 4 iterations chosen
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More questions/thoughts

I Probable valuable: “bottom line tests” as in arXiv:1607.07038
I Covariance matrices:

I How to quote in data releases without numerical issues?
I How to approximate when large?
I How to make sure we have enough multisim throws?
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Some personal opinions

I Field is strongly “visual”: we’re always going to want something to look at to
assess results

⇒ Unfolding will probably always be with us
I Tikhonov-regularized fits offer some clear advantages over iterative techniques
I Always show full data in reco space (in as many dimensions as the cross section).

Not always done!
I Bias-variance tradeoff is a useful frame for thinking about unfolding. Links

discussion to the literature. Makes clear pros and cons
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Unfolding is widely used in neutrino interaction analyses
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I Want to measure identity and kinematics of final-state particles
I Renewed interest because of importance to oscillation analyses
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Some variable
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