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The DUNE Experiment
• DUNE is a next-generation neutrino oscillation experiment.

• Far Detectors (FD) are 800 miles from the neutrino beam source.
• Four modules, each with 10,000 ton of liquid argon.

• High power muon neutrino beam produced at Fermilab.
• Can switch polarity to produce a muon antineutrino beam.

• Look for the appearance of electron (anti)neutrinos at the FD.
• Measure CP-violation.
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NB: I will only write neutrino from now on,
but the same is applicable for antineutrinos



Ingredients for the CP-violation analysis
• We need to consider two signal channels and their backgrounds.

• Charged current  νμ disappearance – main background is NC 1π±.

• Charged current  νe appearance – main background is NC 1π0.

• Primary goal:
• Classify the neutrino flavour as νe ,νμ , ντ or NC.

• Secondary goal:
• Can we go beyond flavour classification to individual interaction mode 

classification?
• Different event classes will have different energy resolutions and systematic 

uncertainties, so separation can provide increased sensitivity.
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Far Detector Data
• The Far Detectors contain three wire readout planes.

• This provides three “images” of each neutrino interaction.

• Simulated electron neutrino interaction (signal).
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Far Detector Data
• The Far Detectors contain three wire readout planes.

• This provides three “images” of each neutrino interaction.

• Simulated electron neutrino interaction (signal).

• Electron produces the highlighted shower, beginning at the vertex.
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Far Detector Data
• The Far Detectors contain three wire readout planes.

• This provides three “images” of each neutrino interaction.

• Simulated neutral current π0 interaction (background).
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Far Detector Data
• The Far Detectors contain three wire readout planes.

• This provides three “images” of each neutrino interaction.

• Simulated neutral current π0 interaction (background).

• π0 decay photon showers are displaced from vertex.
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Image Recognition
• Fine-grained detail of LArTPCs lends itself to image recognition.

• The human eye is a remarkably good image recognition tool.
• Once you know what to look for, it is fairly easy to find distinguishing 

features of different types of interactions.

• Realistically, the experiment will produce too much data for 
scanning the interactions by eye.

• We need to be able to train a computer to do this task.
• Recent years have shown rapid development of automated image 

recognition. One of the most promising approaches is the Convolutional 
Neural Network (CNN).
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Convolutional Neural Networks
• CNNs are used to classify images by applying filters to small 

patches of the image (using a convolution).
• Scans over the image with a number of N x N pixel filters.
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Convolutional Neural Networks
• CNNs are used to classify images by applying filters to small 

patches of the image (using a convolution).
• Scans over the image with a number of N x N pixel filters.
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Convolutional Neural Networks
• CNNs are used to classify images by applying filters to small 

patches of the image (using a convolution).
• Scans over the image with a number of N x N pixel filters.
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Convolutional Neural Networks
• CNNs are used to classify images by applying filters to small 

patches of the image (using a convolution).
• Scans over the image with a number of N x N pixel filters.
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• Each filter extracts some 
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showers.



Convolutional Neural Networks
• CNNs are used to classify images by applying filters to small 

patches of the image (using a convolution).
• Scans over the image with N x N pixel filters.

• Then move onto the next patch of the image and repeat the 
process.
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Convolutional Neural Networks
• The output from each filter then forms the basis of the next layer 

which can include further filters.

• Different architectures can be considerably more complex than 
the above toy example.
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DUNE CNN introduction
• The initial DUNE CNN was based on the NOvA implementation.

• In the last year we have moved to a completely new architecture 
and framework.
• We now use a SE-ResNet[1,2] based architecture.

• Helps preserve the fine-grained detail deeper into the network.
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[1] H. Kaiming et al., Deep residual learning for image recognition, CoRR, arXiv 1512.03385, 2015
[2] J. Hu et al., Squeeze-and-Excitation Networks, arXiv 1709.01507, 2017
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Training and using the CNN

• Use millions of images (~10M images) of simulated neutrino 
interactions with the true neutrino flavour known.
• Allows the CNN to learn the features of each type of neutrino interaction.
• The CNN filters are not predefined – it needs to learn which filters to use 

to extract the information required to classify events.
• Tested on a fully independent sample. 

• Once the CNN is trained it is applied to images with no truth 
information attached – eventually the experimental data.

• The CNN gives probabilities for each event to be the following: 
• Charged-current                          and neutral-current (all flavours).
• Outputs sum to one.
• Use these probabilities for the event selection.
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Training and using the CNN
• We have trained and tested the network on a very powerful 

machine (x8 NVIDIA Tesla V100 GPUs).

• Loss and accuracy:
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Visualisations of the feature extraction
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Selecting Electron Neutrinos
• Electron neutrino probability spectra from the DUNE CVN.

• Curves combine neutrinos and antineutrinos.

Saúl Alonso-Monsalve 22

0 0.2 0.4 0.6 0.8 1
 ProbabilityenCVN 

0

200

400

600Ev
en

ts

 signalenCC 

 backgroundµnCC 

 backgroundtnCC 

 backgroundnNC 

 beam backgroundenCC 

0 0.2 0.4 0.6 0.8 1
 ProbabilityenCVN 

0

50

100

150Ev
en

ts

 signalenCC 

 backgroundµnCC 

 backgroundtnCC 

 backgroundnNC 

 beam backgroundenCC 

DUNE Work in Progress DUNE Work in Progress

Neutrino beam Antineutrino beam



Selecting Electron Neutrinos
• Electron neutrino probability spectra from the DUNE CVN.

• Curves combine neutrinos and antineutrinos.
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Electron Neutrino Efficiency
• Select all events that are 

more than 85% likely to be 
electron neutrinos.

• Over 90% selection 
efficiency in the flux peak.

• Efficiency better for 
antineutrinos due to 
typically cleaner final state 
(neutron instead of proton).
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Selecting Muon Neutrinos
• Muon neutrino probability spectra from the new CVN.

• Curves combine neutrinos and antineutrinos.
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Selecting Muon Neutrinos
• Muon neutrino probability spectra from the new CVN.

• Curves combine neutrinos and antineutrinos.
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Muon Neutrino Efficiency
• Select all events that are 

more than 50% likely to be 
muon neutrinos.

• Over 90% selection 
efficiency in the flux peak.

• Efficiency better for 
antineutrinos due to 
typically cleaner final state 
(neutron instead of proton).
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CP-Violation Sensitivity – Dec 2018
• Same selection criteria:

• νe selection: P(νe) > 85%.
• νμ selection: P(νμ) > 50%.

• Very large improvement 
over the previous CVN.

• Exceeded the DUNE 
conceptual design report 
sensitivity.
• Very big milestone for DUNE!
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Robustness
• We will use protoDUNE to test the CVN on real data.

• There are no neutrinos at protoDUNE, but we can use single particle. 
extracted from events to approximate simple neutrino interactions.

• Select individual reconstructed objects and pass into the CVN.
• Cosmic muon tracks mimic CCQE νμ interactions.
• Beam electron showers mimic CCQE νe events.
• The CVN should return classifications of CC νμ and CC νe with no hadronic

system, respectively.

• We will also use fake data studies to ensure robustness against 
systematic effects, including those from alternative event 
generators.
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Summary
• The DUNE CVN provides powerful neutrino interaction flavour

classification.
• Hope to demonstrate good performance of exclusive final-states in the 

coming months.

• ProtoDUNE provides an excellent opportunity to test the CVN on 
data using single particles to mimic simple neutrino interactions.

• Further improvements will provide diminishing returns on the 
experimental sensitivity.
• The focus now shifts to ensuring robustness and equal performance when 

applied to data and simulation.
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