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Disclaimer

Statisticians have “discussions” orais) rather than
“‘summaries” (of conferences).

This is an incomplete discussion of some of the
topics that | found interesting.

Other interesting topics.... but my time is limited.

I’'m sure I'm missing important contributions!

Correct me if | mischaracterize your work!!

Imperial College
London
....and forgive me if | stand on my soap box a bit....
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Statistical Framework for Discovery

Hypothesis Testing

Ho: The null hypothesis (e.g., no CP-violoation, § = 0)

Hi: The alternative hypothesis (e.g., CP-violation)

@ Without further evidence, Hy is presumed true.
@ “Deciding” on H; means scientific discovery: new physics.

Other Model Hypothesis Tests

Selection: May be no presumed model. (e.g., normavinverted hierarchy)
Multiple: More than two models. (STEFANO G)
Checking: Is data consistent with model? H; not required.

... a.k.a., ‘goodness of fit”

Imperial College
Different statistical approaches, e.g., Frequentist, Bayesian.‘
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Model Fitting vs Model Selection/Checking

Model Fitting

@ Specify one model, fit parameters, estimate uncertainty.
@ Frequency and Bayesian tend to agree. (Jim B, BoB C)
@ Choice of prior distribution is often not critical.

@ Some “model selection”tasks can be accomplished via
model fitting and computing

@ confidence or credible intervals.
e probability of region in parameter space.
o formal model selection is often easier in these cases
The one-sided tests that Jim B discussed.

@ Computation is often much easier too!
(e.g., Bayes Factors / Monte Carlo p-values, aka toys)

Perfect Storm: Model fitting is both much -
more challenging and scientifically higher profile. oo %
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Frequentist or Bayesian?

Do you have to choose??

@ Bayes prescribes method — Frequency evaluates method.

@ Frequency evaluation of Bayesian methods.
| like intervals to include true values... at least once in a while.
Rob, Glen over lunch: marginalize/profile nuisance parameters

@ Model fitting: often little difference in fits and errors.
... but not always, see below.

@ Why not control detection error
and assess probability of new physics?

@ Why throw away half of your tool box?

I'm impressed with the openness of neutrino researchers to
both Bayesian and Frequency based methods.

@ Several Bayesian procedures (Alex H, Stefano G, Matteo A, Glen C)lmperial College
. . . . . |
@ My experience with cosmologists & particle physicists.

David A. van Dyk PhyStat-v 2019



Outline

@ Model Building and Fitting
@ Model Building
@ Parameter Estimation
@ Interval Estimation and Upper Limits

e Quantifying Discovery: Testing Hypotheses
@ Frequentist vs. Bayesian: No easy answers.
@ A Taxonomy of Tests

e Strategies

Imperial College
London
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Model Building and Fitting Model Building
Parameter Estimation
Interval Estimation and Upper Limits

Outline

@ Model Building and Fitting

Imperial College

London
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Model Building and Fitting Model Building
Parameter Estimation
Interval Estimation and Upper Limits

A modular approach to statistics

Wouter on "Model Building for Systematic Uncertainties”
@ Separate model building from analysis ... in his case via RooFit

@ Modular approach to set generative model / likelihood.
Tom: what would be needed to deploy RooFit in neutrino experiments?

This can be taken further: ... two examples: EM and FC
@ Modelling: Identify scientific goal, derive likelihood, priors
© Deriving Statistical Methods

e estimates, intervals, model checking and selection
e minimize x?, likelihood-based, Bayes, others?
e E Valuating Statistical Methods (What are the operating characteristics?)
e frequency based: coverage, error rates, mean square error
e Bayesian: complete summary of information?
© Computation: “what to compute” vs.*how to compute it.”

Imperial College
naon

And Always Report Your Likelihood!



Model Building and Fitting Model Building
Parameter Estimation
Interval Estimation and Upper Limits

That’s What We Want to See

Likelihood function from paper &
all the analysis categories. The complete likelihood is given in Eq.
L (data| A7, iy, s, ) =
na oy (50| AGAKG] (85)S] (1 105)L + 1o pSdhon (1 165) + mpy B (mh |95) G
HHH( )

Pois (11 |y + s )PAE(05) P (0),
(STEFAN SCHMITT)
Imperial College

London
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Model Building and Fitting Model Building
Parameter Estimation
Interval Estimation and Upper Limits

Combining Analyses / Global Fits

Nicholas on Atlas/CMS Combing Procedures
@ Combine likelihood functions, ... same logic for unfolding!
e not estimates, x? values, or p-values!  (LouIS W/ P-VALUES)
@ Careful diagnostics to be sure the individual fits are
consistent before combining.

@ Alvaro on Global Analysis of
Reactor Anti-Neutrino Data:

“Goodness of fit is meaningless
because the data are totally

incompatible.”

What would it mean to average the

MLEs of these likelihoods or combine

there 2 values? Imperial College

&
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Model Building and Fitting Model Building
Parameter Estimation
Interval Estimation and Upper Limits

Systematics Errors

Lots of discussion of Systematics!
(Alex H, Chao Z, Wouter V, Nicholas W, Constantinos A, Thierry L)

Bob: “When you discover a new dimension/particle, can you convince the
world you understand the systematics well enough to back up your claim?”

Constantinos on Systematic Errors in Neutrino Experiments

Sometimes systematics can be well quantified... but there are
@ “Highly non-trivial uncertainties in systematics"
@ Modeled with a “Mix of theory, empirical models,
extrapolation, and guesses”
@ “Many key uncertainties are not reweighted — tend to be
ignored”

Uncertainty in the Systematics! imperial College
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Model Building and Fitting Model Building
Parameter Estimation
Interval Estimation and Upper Limits

Systematics Errors

Glen on Uncertainty in Error Parameters (Systematics)
@ Reported variance is unbiased estimate of true variance
@ Use gamma distribution to quantify relative uncertainty.
@ Profile out the true (unknown) variance in closed form.

@ Use Bartlett Correction to improve asymptotics.
.... see also Anthony D’s discussion of Higher-Order Likelihood Inference.

Meanwhile Alain warns: “It is not recommended (i.e. should be forbidden
really) to fit some data with a convenient but arbitrary or unsure or
model-dependent function (i.e. fit looks good) and act as if the error matrix of
the fit represents the uncertainty on the fit data. It does not, — and this

can go very wrong!” ... even for Sy stematilcs ?|c I
fondon 2
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Model Building and Fitting Model Building
Parameter Estimation
Interval Estimation and Upper Limits

Calibration of X-ray Detectors

Background —.
Computer S
Models Photon Blur >

& Absorption B
b = / =
Basic - Parametric . L
Physics I Madels .

Multi-5cale

M Observed Data
(mean = &)

-4

¥

Models

Effective Area Curve \

AN

@ Embed physics models into multi-level statistical models.

@ Must account for complexities of data generation.

@ Effective area: instrument sensitivity as function of energy.

@ PCA to derive low-dimensional prior on eff. area, A. rperbiColege
@ Similar for smearing — embed unfolding in unified analysisin
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Model Building and Fitting Model Building
Parameter Estimation
Interval Estimation and Upper Limits

Accounting for Uncertainty in Effective Area

@ Introduce a Bayesian approach
to reduce prior assumptions.

800

(em’)
600

@ Proceed by averaging the

standard model, p(6|A,Y), over
uncertainty in A, w(A):

7(0]Y) = / p(0|A, Y)r(A)dA.

400

ACIS-S effective area (cm?
200

E [keV]

@ Use PCA summary of calibration
sample to derive prior for A.

default subtracted effective area (cm?)

@ No parametric models needed!

) 02 1 Imperial Callege
Xu, DvD et al (2014) Astrophysical J 794, 97. Elkev] London
Chen, DvD et al (2019+) JASA, to appear, arXiv:1711.09429
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Model Building and Fitting Model Building
Parameter Estimation
Interval Estimation and Upper Limits

Sampling From the Full Posterior

Default Effective Area Pragmatic Bayes Fully Bayes

2.04
2.04
2.04

6,
6,
6,

2.00
°
2.00
2.00

1.96

©

o4

0.90 0.95 1.00 1.05 - 0.90 0.95 1.00 1.05 0.90 0.95 1.00 1.05
6, 6 6,

Spectral Model (purple bullet = truth):

1.96

f(Ej) = 01E; 2

Pragmatic Bayes is clearly better than standard method,
but a Fully Bayesian Method is the ultimate goal. mperia College
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Model Building and Fitting Model Building
Parameter Estimation

Interval Estimation and Upper Limits

How it Works on a Sample of Radio-Loud Quasars

o Pragmatic Bayes o Fully Bayes
i ‘ i ‘
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Model Building and Fitting Model Building
Parameter Estimation
Interval Estimation and Upper Limits

Unfolding and Deconvolution

Nice overview by Mikael K, Stefan S, Phillip R, Stephen D, Xin Q
@ X is a smeared / blurred version of “ideal” data Y.
@ Suppose Y ~fsothat X ~foK

@ Unfolding ignores f and models Y as Multinomial(p),

fits p by ML or Penalized ML.
... stopping EM early is an outdated strategy.

Better Strateqy ... but what if there are complex errors in K ?
@ Compare f o K directly with X.
@ No need for regularization (f will provide it automatically).

@ Or comparre f; o K with f, o K.
If smeared data can'’t distinguish models.... like mass hierarchy!

@ Avoid background subtraction. (STEPHEN D CAN DO!)
@ LIRA: Bayesian, estimate regularization on the fly! Imperial College

Weak structure in f — Esch, DvD et al (2004), Astrophysical J, 610, 121§

David A. van Dyk PhyStat-v 2019
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Model Building and Fitting Model Building
Parameter Estimation
Interval Estimation and Upper Limits

Bayesian vs Frequentist — Large Sample Asymptotics

Frequentist justification of likelihood based methods:
under certain conditions...

@ 0wk is an asymptotically unbiased estimator of 6
@ The sampling variance of dyi g goes to zero as n — cc.
© (standardized) OMLE converges in distribution to normal.

Bayesian estimates enjoy the same asymptotic properties!
if prior assigns positive probability to a neighborhood of 6

@ Large sample asymptotics are primary justification for
likelhood-based methods.

@ Bayesian methods enjoy alternative (small sample)
justification.

Imperial College
London

David A. van Dyk PhyStat-v 2019



Model Building and Fitting Model Building
Parameter Estimation
Interval Estimation and Upper Limits

When to worry

If your analyses are based on asymptotic frequency properties,
@ your data being Gaussian is not enough.

You need to watch for warning signs....
@ strange (non-convex?) contours (HIMMEL)
@ MLE/MAP on boundary of parameter space
@ confidence intervals contain non-physical values

If asymptotics don’t apply investigate
frequency properties via Monte Carlo!

... or base inference on small sample )
s g e , Imperial College
Jjustification of Bayesian analyses. 1.ondon
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Model Building and Fitting Model Building
Parameter Estimation
Interval Estimation and Upper Limits

Sensitivity to Choice of Prior

Prior sensitivity is CONCErn (even for sayesiansy  (ALEX, STEFANO, MATTEO)
Despite relative insensitivity with parameter estimation — Jim B

Stefano on Normal vs Inverted Hierarchy:

OSC

strong
20 modgtate

inconclusive|

Why the difference? Not typlcally sensitive to prior (Jim)

@ Choice of parameterization? (M1, Mg, M3) VS (Min, AN, | AN,

. f orior? MLE and posterior are invariant, but not MAP or mean
© Choice of prior Imperial College

@ Including different constraints or external information? “*"“*"
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Model Building and Fitting Model Building
Parameter Estimation
Interval Estimation and Upper Limits

But then again, maybe the prior is influential...

Anthony D computed profile likelihood:

T T T T T T T
-200 =150 -100 -50 0 50 100

-35 -30 -25
1

Twice log likelihood
—45 -40

mulL

20, (pr,) for normal hierarchy (black) and inverted hierarchy (red)

Anthony: “Need more and different data” %% '
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Model Building and Fitting Model Building
Parameter Estimation
Interval Estimation and Upper Limits

When Prior Matters — Simple Example

Suppose we are interested in correlation, p, of the heights of
father’s and their adult sons.

son's height (inches)

father's height (inches)

Model with bivariate Gaussian distribution

Imperial College

London
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Model Building and Fitting Model Building
Parameter Estimation
Interval Estimation and Upper Limits

When Prior Matters — Simple Example

What if we lost the coupling between fathers and sons?
@ Easy to estimate means and standard deviations
@ For correlation, p, prior will matter — consider three choices.

uniform on rho

L J Imperial College
London

-10 -05 00 05 10
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Model Building and Fitting Model Building
Parameter Estimation
Interval Estimation and Upper Limits

Posterior for p with n =0

n = 0, no bivariate pairs

0
i
n=0
o
S
5
8
%
o
g
0
°
-1.0 -05 0.0 05 10 X
rho Imperial College
London
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Model Building and Fitting Model Building
Parameter Estimation
Interval Estimation and Upper Limits

Posterior for p with n =10

n = 10, the number of bivariate pairs

0
9
n=10
o
]
5
5
g
g
g
w»
o
-1.0 -0.5 0.0 0.5 1.0

rho
Imperial College

If prior is overly influential, may have bigger problems. """
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Model Building and Fitting Model Building
Parameter Estimation
Interval Estimation and Upper Limits

Posterior for p with n = 25

n = 25, the number of bivariate pairs

<
n=25

©
8
8
]
AN

-

° X

-1.0 -05 0.0 05 10 .
rho Imperial College
London
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Model Building and Fitting Model Building
Parameter Estimation
Interval Estimation and Upper Limits

Posterior for p with n =100

n =100, the number of bivariate pairs

©

n =100

posterior

-1.0 -05 0.0 05 10 .
rho Imperial College

London
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Model Building and Fitting Model Building
Parameter Estimation
Interval Estimation and Upper Limits

Back to Mass Hierarchy

Anthony D computed profile likelihood:

Tel
g -
I
3 8 /
o I
£
2 8-
=y I
k-l
8 § 4
H
0
2 |
1
T T T T T T T
-200 -150 -100 -50 0 50 100

20, (pr,) for normal hierarchy (black) and inverted hierarchy (red)

Anthony: “Need more and different data” %% '
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Model Building and Fitting Model Building
Parameter Estimation
Interval Estimation and Upper Limits

Back to Mass Hierarchy

But there appears to be more to the data: (EMiLIO C)
NH and IH Spectra

Expected spectra for normal and inverted hierarchy at 53km, finite
energy resolution

Emilio argues that distinguishing NH from IH is dlifficult, ymperial coliege
but looks like more than three Gaussian variates. %"
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Model Building and Fitting Model Building
Parameter Estimation
Interval Estimation and Upper Limits

When The Prior Matters — Strategies

Avoid confusing "uniform” with "uninformative"
“The statisticians will kill me [for using uniform prior]” — Stefano

@ What does "uniform” mean? Depends on choice of scale.
@ On a unit hypercube of dimension D,
Pr(within e of boundary) = 1 — (1 — 2¢)°.
With e = 0.01:

@ D = 10 gives Pr(within ¢ of boundary) = 18%

@ D = 35 gives Pr(within e of boundary) = 50%
... the curse of dimensionality (CHAD S)

Reference Prior: Maximize (some measure of, e.g, KL, Hellinger) eXpeC’[ed
discrepancy between prior and posterior distributions. (Jim)

Sensitivity Analysis: Try multiple priors — and sample sizes.

Best to use subjective prior, derive a reference prior,
or — best of all — get more data! Imperial College
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Model Building and Fitting Model Building
Parameter Estimation
Interval Estimation and Upper Limits

Feldman Cousins

Feldman-Cousins remains popular as ever
(ALEX H, NICHOLAS W, MATTEO A, CHAO Z, BANNANJE N)

Bob C provided a nice review and history.

Bannanje on Efficient Inference with Gaussian Processes
@ Use Gaussian Process to interpolate and save computing

Priority Sampled Points Confidence Contours

07
100 .

Can this overcome the computation cost of FC?? imperial Coliege

London
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Model Building and Fitting Model Building
Parameter Estimation
Interval Estimation and Upper Limits

CLs — Avoiding Exclusion Under an Insensitive Test

(CHRISTOPHE B, CHAO Z)
@ Exclusion is unwarranted

@ Do not exclude H; if both
1 —ppand 1 — p; are small

.
t- t t t

Read (2000) suggested excluding H; only if

1—p1 . Pr(T<t(,bs\H1)
1—po  Pr(T < tws|Ho) —

Q.

CLs =
Exclude H; if T < t»s much less likely under H; than under Hj

Bob C: Better to report both p-values.
DvD: Three parameter sets: no sensitivity, excluded, not excluded.

Imperial College
London
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Frequentist vs. Bayesian: No easy answers

Quantifying Discovery: Testing Hypotheses A Ty o TS

Outline

9 Quantifying Discovery: Testing Hypotheses

Imperial College

London
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Frequentist vs. Bayesian: No easy answers.

Quantifying Discovery: Testing Hypotheses A Ty o s

The Problem with P-values

The misuse of P-values:

@ Replace data with “data as extreme of more extreme” )
— not particularly conservative.

@ Often mistakenly interpreted as Pr(Hy), but:

@ Cannot be calibrated vis-vis Pr(Hp).
@ Do not measure relative likelihood of hypotheses.
@ Can vastly overstate evidence for H;. (Jim)

@ May depend on bits of Hp that are of no interest.
@ Single filter for publication / judging quality of research.
@ Cherry-picking results based on p-value / publication bias.

Reviewers, Editors, and Readers want a simple
black-and-white rule: p < 0.05, or > 5¢.

But statistics is about quantifying uncertainty, not expressing certainty. ‘Impe"a' College
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Frequentist vs. Bayesian: No easy answers.

Quantifying Discovery: Testing Hypotheses A Ty o s

50 Discovery Threshold

50 is required for “discovery”

@ High profile false discoveries led to conservative threshold

@ Treat Bump Location as known (multiple-testing) (DvD)
@ “What would you have done had you had different data”

@ Calibration, systematic errors, and model misspecification
@ Of course cranking down « does not address these issues

v

“In particle physics, this criterion has become a convention ...
but should not be interpreted literally *.”

Bob: “Two 3.5¢0 results are better than one 5o result.”

DvD: “Calibrated 3.50 result is better than uncalibrated 5¢.”

Louis: “Extraordinary claims require extraordinary evidencea colege
Thamaso “Can we agree not to quote more than 50 ??.” '
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Frequentist vs. Bayesian: No easy answers.

Quantifying Discovery: Testing Hypotheses A Ty o s

The Problem with Priors

Bayesian methods have challenges of their own. (BoB C)

Bayes Factor = 2?82 with pi(y) = /p,-(y|9)p,-(9)d9.

Po(y)mo _ o
Pr(HO | y) - po(}’)770 + Py (y)7-(1 - o + 1 (BayeS FaCtOr)_1

Likelihood: y ~ N(u, 1)
Test: p=0vsu#0
Prior Dist'n: u ~ N(0,72)
Prior Pred.: y ~ N(0, 1+ 72)

prior predictive
00 01 02 03 04

-5 0 5
ollege

Value of pi(y) depends on 72!




Frequentist vs. Bayesian: No easy answers.

Quantifying Discovery: Testing Hypotheses A Ty o s

Choice of Prior Matters!

Bayes Factor

H0: yNN(O,1). C“"

Ha: y ~N(0,1+7%). &7

@ Observe y =3 It

e log(Bayes Factor) 5% 5 5 8 & &
log(tau”2)

Must think hard about choice of prior and report!

Imperial College
1
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Frequentist vs. Bayesian: No easy answers.

Quantifying Discovery: Testing Hypotheses A Ty o s

Bayes Factors and Likelihood Ratios

Likelihood Ratio optimizes parameters, whereas Bayes Factor marginalizes.

maxg, Po(Y | bo) J po(y | 6o) P(fo) dbo
maxe, p1(y | 01) S pi(y | 61) p(61) dos
....unless there are no parameters under either model.

A Bayesian Occam’s Razor

@ Suppose p(6;) are both essentially flat over range where corresponding
likelihoods are non-negligible.

J Po(y | 6o) P(6o) dbo ~ p(@o) [ po(y | 6o) dbo
S pi(y 1 61) p(61) dor — p(dy) [ pi(y | 6+) do;

Likelihood Ratio =

# Bayes Factor =

Bayes Factor =

@ The term p(f)/p(f:) is sensitive to dimension and scale.
@ At mode, multivariate normal prior oc 1/|%|9/2.

(] Bayes Factor penalizes Iarger models. ...and depends strongly on choice of prior.
ollege

@ Don't hide your priors!
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Frequentist vs. Bayesian: No easy answers.

Quantifying Discovery: Testing Hypotheses A Tr@Tamy o TS

A Taxonomy of Tests

Different types of tests involve different methods

Simple vs Simple
Nested |: One-sided tests

Nested II: Precise null (with Hy on boundary)
Nested Ill: Parameters undefined under Hy
Non-Nested

In each case we can consider relative
advantages of p-values an Bayesian methods.

Imperial College
London
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Frequentist vs. Bayesian: No easy answers.

Quantifying Discovery: Testing Hypotheses A Tr@Tamy o TS

Simple vs Simple

Simple vs Simple
@ Hp and H; are fully specified: no unknown parameters.
@ E.g., normal hierarchy vs inverted hierarchy.

o Bayes Factor = 2} = Likelihood Ratio

P-values: log(Likelihood Ratio) ~ NORMAL (large n) (ANDREY)
(Must use Monte Carlo to specify two null distributions.)
Bayesian: No problem with priors!
Methods give consistent results.
Andrey gives example when used for trigger
... but with small n not Gaussian

Imperial College
on

Everything is simple, but models rarely fully specified Londc
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Frequentist vs. Bayesian: No easy answers.

Quantifying Discovery: Testing Hypotheses A Tr@Tamy o TS

Nested |: One-sided Tests

Nested |: One-sided Tests
@ Hy:0<6y versus Hy:602> 6.
@ Eg., Hyo: Am3, <0 versus H;:Am3, > 0.

P-values: p-value = sup Pr (T(y) > T(Vobs) | 9) (Use Wilks Thm.)
0<6q

Bayesian: Avoid po(y) and p2(y): Pr(Ho | y) = Pr(0 <6 | y).
@ Requires only one model and one prior specification.
@ Can incorporate external knowledge into Bayesian
analysis via prior, e.g., |Am2,| = 2.43 £0.13.
@ Mass hierarchy can be handled this way (irequency or Bayesian)
...much easier than non-nested model comparison.

Again methods give consistent results. impeia colege
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Quantifying

Frequentist vs. Bayesian: No easy answers.

Discovery: Testing Hypotheses A Taxonomy of Tests

Nested Il: Precise Null (with Ho on boundary)

Nested Il: Precise Null

fyild) = (1 = Nh(yila) + M (yiln)

@ fiis fully
o Ho:)\ZO
Hi: A>0

background + Higgs

| “H‘I Higgs

- . . e signal

specified: i.e., u is known. ‘
(no discovery)

(discovery)

P-values:
Bayesian:

Example:

; M; Kﬁown!
LRT: Wilks does not apply, use Chernoff.

Choice of priors on A matters! (JIm B)
P-values < Pr(Hyp | ).

Neutrino-less Double beta decay (MATTEO A)
Bayes and P-value differ — why not report both? imperial College
“Important to understand” what each means. London
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. R Frequentist vs. Bayesian: No easy answers.
Quantifying Discovery: Testing Hypotheses A Tr@Tamy o TS

Nested IlI: Precise Null (with Parameters Undefined Under Hp)

Nested lll: . undefined under Hy
fyil0) = (1= Nh(yila) + A (yilw)
@ 1 unknown, no value under Hp.
@ Hy: A=0 versus H;: A >0

| Higgs
o signal
!

(i Unkriown!
P-values: Bound global p-value
@ Look elsewhere effect, method of GV.  (PHILLIP L)

Bayesian: Choice of priors on A and p matter!
@ Use prior on u to correct for LEE.

Examples: How to correct for harmonic bumps? (PHILLIP L)
check out Sara Algeri’s arXiv:1701.06820 and 1803.03858

other examples  (CHAO Z, NICHOLAS W, BIRGIT N, ) oo
. London
Why are local p-values still reported?

David A. van Dyk PhyStat-v 2019



Frequentist vs. Bayesian: No easy answers.
A Taxonomy of Tests

Quantifying Discovery: Testing Hypotheses

Non-nested models

Non-nested models o

Dark
Matter

@ two parameterized non-nested models

@ Hjy: ~v-ray energy of known cosmic sources
Hs: y-ray energy of dark matter.

@ Hp: normal hierarchy

) > Known cosmic
H,: inverted hierarchy .

source

@ Is there a null model? °

P-values: Embed in mixture model and bound global p-value
or Monte Carlo (toys).

Bayesian: No problems in principle.
... but choice of prior may cause difficulties.

Imperial College
aon

Best to avoid if you can! E.g., mass hierarchy. o



SIEICHES

Outline

e Strategies

Imperial College

London
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SIEICHES

Strategies

What is a physicists to do?

@ Controlling false discovery is critical in physical sciences.
and itervals that contain the truth... some of the time!

@ Comparing p-values with a predetermined significant level
can control false diSCOVGFy.... if used with care, e.g., no cherry picking!

@ When confronted with small p-values researchers
.even statisticians!!... may believe Hy is unlikely.

° Baye3|an solutions can better quantify likelihood of Hy / H;.
@ Solution: Compute both global p-value and Bayes Factor.

Careful

@ global corrections for p-values

@ choice and validation of prior distributions Imperial College
remain chal/eng/ng/
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