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Disclaimer

Statisticians have “discussions” (of talks) rather than
“summaries” (of conferences).

This is an incomplete discussion of some of the
topics that I found interesting.

Other interesting topics.... but my time is limited.

I’m sure I’m missing important contributions!

Correct me if I mischaracterize your work!!

....and forgive me if I stand on my soap box a bit....

David A. van Dyk PhyStat-ν 2019
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Statistical Framework for Discovery

Hypothesis Testing

H0: The null hypothesis (e.g., no CP-violoation, δ = 0)

H1: The alternative hypothesis (e.g., CP-violation)

Without further evidence, H0 is presumed true.
“Deciding” on H1 means scientific discovery: new physics.

Other Model Hypothesis Tests
Selection: May be no presumed model. (e.g., normal/inverted hierarchy)

Multiple: More than two models. (STEFANO G)

Checking: Is data consistent with model? H1 not required.
... a.k.a., “goodness of fit”

Different statistical approaches, e.g., Frequentist, Bayesian.
David A. van Dyk PhyStat-ν 2019
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Model Fitting vs Model Selection/Checking

Model Fitting

Specify one model, fit parameters, estimate uncertainty.
Frequency and Bayesian tend to agree. (JIM B, BOB C)

Choice of prior distribution is often not critical.
Some “model selection” tasks can be accomplished via
model fitting and computing

confidence or credible intervals.
probability of region in parameter space.
formal model selection is often easier in these cases

The one-sided tests that Jim B discussed.
Computation is often much easier too!

(e.g., Bayes Factors / Monte Carlo p-values, aka toys)

Perfect Storm: Model fitting is both much
more challenging and scientifically higher profile.

David A. van Dyk PhyStat-ν 2019
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Frequentist or Bayesian?

Do you have to choose??
Bayes prescribes method — Frequency evaluates method.
Frequency evaluation of Bayesian methods.

I like intervals to include true values... at least once in a while.
Rob, Glen over lunch: marginalize/profile nuisance parameters

Model fitting: often little difference in fits and errors.
... but not always, see below.

Why not control detection error
and assess probability of new physics?

Why throw away half of your tool box?

I’m impressed with the openness of neutrino researchers to
both Bayesian and Frequency based methods.

Several Bayesian procedures (Alex H, Stefano G, Matteo A, Glen C)

My experience with cosmologists & particle physicists.
David A. van Dyk PhyStat-ν 2019
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A modular approach to statistics

Wouter on ”Model Building for Systematic Uncertainties”
Separate model building from analysis ... in his case via RooFit

Modular approach to set generative model / likelihood.
Tom: what would be needed to deploy RooFit in neutrino experiments?

This can be taken further: ... two examples: EM and FC
1 Modelling: Identify scientific goal, derive likelihood, priors
2 Deriving Statistical Methods

estimates, intervals, model checking and selection
minimize χ2, likelihood-based, Bayes, others?

3 Evaluating Statistical Methods (What are the operating characteristics?)

frequency based: coverage, error rates, mean square error
Bayesian: complete summary of information?

4 Computation: “what to compute” vs.“how to compute it.”

And Always Report Your Likelihood!
David A. van Dyk PhyStat-ν 2019
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That’s What We Want to See

January 2019 S.Schmitt, PHYSTAT-nu 2019, Unfolding: collider experience 12

Template fit example

● Template fits often are done in
background-dominated analyses

● In many cases RooFit is used as tool –
designed to work with many distributions and
many bins (signal and control regions)

● RooFit also can handle non-linear nuisance
parameters besides the signal and
background normalisation factors

● Example: H→γγ differential cross
sections [CMS, arXiv:1807.03825]

Likelihood function from paper

“Oscillating” behavior is typical
for non-regularized unfolding,
together with negative
correlation coefficients

[Plot of correlation coefficients
taken from ICHEP2018 talk by
V. Tavolaro, backup slides]  

(STEFAN SCHMITT)

David A. van Dyk PhyStat-ν 2019
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Combining Analyses / Global Fits

Nicholas on Atlas/CMS Combing Procedures
Combine likelihood functions, ... same logic for unfolding!

not estimates, χ2 values, or p-values! (LOUIS W/ P-VALUES)
Careful diagnostics to be sure the individual fits are
consistent before combining.
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Alvaro on Global Analysis of
Reactor Anti-Neutrino Data:
“Goodness of fit is meaningless
because the data are totally
incompatible.”

What would it mean to average the
MLEs of these likelihoods or combine

there χ2 values?

David A. van Dyk PhyStat-ν 2019
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Systematics Errors

Lots of discussion of Systematics!
(Alex H, Chao Z, Wouter V, Nicholas W, Constantinos A, Thierry L)

Bob: “When you discover a new dimension/particle, can you convince the
world you understand the systematics well enough to back up your claim?”

Constantinos on Systematic Errors in Neutrino Experiments

Sometimes systematics can be well quantified... but there are
“Highly non-trivial uncertainties in systematics"
Modeled with a “Mix of theory, empirical models,
extrapolation, and guesses”
“Many key uncertainties are not reweighted – tend to be
ignored”

Uncertainty in the Systematics!
David A. van Dyk PhyStat-ν 2019
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Systematics Errors

Glen on Uncertainty in Error Parameters (Systematics)
Reported variance is unbiased estimate of true variance
Use gamma distribution to quantify relative uncertainty.
Profile out the true (unknown) variance in closed form.
Use Bartlett Correction to improve asymptotics.

.... see also Anthony D’s discussion of Higher-Order Likelihood Inference.

Meanwhile Alain warns: “It is not recommended (i.e. should be forbidden
really) to fit some data with a convenient but arbitrary or unsure or
model-dependent function (i.e. fit looks good) and act as if the error matrix of
the fit represents the uncertainty on the fit data. It does not, – and this
can go very wrong!” ... even for systematics?

David A. van Dyk PhyStat-ν 2019
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Calibration of X-ray Detectors

Embed physics models into multi-level statistical models.
Must account for complexities of data generation.
Effective area: instrument sensitivity as function of energy.
PCA to derive low-dimensional prior on eff. area, A.
Similar for smearing – embed unfolding in unified analysis.

David A. van Dyk PhyStat-ν 2019
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Accounting for Uncertainty in Effective Area
Introduce a Bayesian approach
to reduce prior assumptions.

Proceed by averaging the

standard model, p(θ|A,Y ), over
uncertainty in A, π(A):

π(θ|Y ) =

∫
p(θ|A,Y )π(A)dA.

Use PCA summary of calibration
sample to derive prior for A.

No parametric models needed!

Xu, DvD et al (2014) Astrophysical J 794, 97.
Chen, DvD et al (2019+) JASA, to appear, arXiv:1711.09429
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Sampling From the Full Posterior
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Spectral Model (purple bullet = truth):

f (Ej) = θ1E−θ2
j

Pragmatic Bayes is clearly better than standard method,
but a Fully Bayesian Method is the ultimate goal.

David A. van Dyk PhyStat-ν 2019
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How it Works on a Sample of Radio-Loud Quasars
Pragmatic Bayes Fully Bayes

−3 −2 −1 0 1 2 3

0.
02

0.
05

0.
10

0.
20

0.
50

(CIpB − Γ̂std) σ̂std(Γ)

σ̂ s
td
(Γ

)

●

●

●

●

●

●

377
866
1602
3055
3056
3097
3098
3100
3101
3102
3103
3104
3105
3106
3107

−3 −2 −1 0 1 2 3

0.
02

0.
05

0.
10

0.
20

0.
50

(CI fB − Γ̂std) σ̂std(Γ)

σ̂ s
td
(Γ

)
●

●

●

●

●

●

377
866
1602
3055
3056
3097
3098
3100
3101
3102
3103
3104
3105
3106
3107

David A. van Dyk PhyStat-ν 2019



Model Building and Fitting
Quantifying Discovery: Testing Hypotheses

Strategies

Model Building
Parameter Estimation
Interval Estimation and Upper Limits

Unfolding and Deconvolution

Nice overview by Mikael K, Stefan S, Phillip R, Stephen D, Xin Q

X is a smeared / blurred version of “ideal” data Y .
Suppose Y ∼ f so that X ∼ f ◦ K
Unfolding ignores f and models Y as Multinomial(p),
fits p by ML or Penalized ML.

... stopping EM early is an outdated strategy.

Better Strategy ... but what if there are complex errors in K ?

Compare f ◦ K directly with X .
No need for regularization (f will provide it automatically).
Or comparre f1 ◦ K with f2 ◦ K .

If smeared data can’t distinguish models.... like mass hierarchy!

Avoid background subtraction. (STEPHEN D CAN DO!)

LIRA: Bayesian, estimate regularization on the fly!
Weak structure in f – Esch, DvD et al (2004), Astrophysical J, 610, 1213

David A. van Dyk PhyStat-ν 2019
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Bayesian vs Frequentist – Large Sample Asymptotics

Frequentist justification of likelihood based methods:
under certain conditions...

1 θ̂MLE is an asymptotically unbiased estimator of θ
2 The sampling variance of θ̂MLE goes to zero as n→∞.
3 (standardized) θ̂MLE converges in distribution to normal.

Bayesian estimates enjoy the same asymptotic properties!
if prior assigns positive probability to a neighborhood of θ

Large sample asymptotics are primary justification for
likelhood-based methods.
Bayesian methods enjoy alternative (small sample)
justification.

David A. van Dyk PhyStat-ν 2019
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When to worry

If your analyses are based on asymptotic frequency properties,
your data being Gaussian is not enough.

You need to watch for warning signs....
strange (non-convex?) contours (HIMMEL)

MLE/MAP on boundary of parameter space
confidence intervals contain non-physical values

If asymptotics don’t apply investigate
frequency properties via Monte Carlo!

. ... or base inference on small sample
justification of Bayesian analyses.

David A. van Dyk PhyStat-ν 2019
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Sensitivity to Choice of Prior

Prior sensitivity is concern (even for Bayesians!) (ALEX, STEFANO, MATTEO)
Despite relative insensitivity with parameter estimation – Jim B

Stefano on Normal vs Inverted Hierarchy:

Why the difference? Not typically sensitive to prior (JIM)
1 Choice of parameterization? (m1,m2,m3) vs (mmin,∆m2

21, |∆m2
31)|

MLE and posterior are invariant, but not MAP or mean
2 Choice of prior?
3 Including different constraints or external information?

David A. van Dyk PhyStat-ν 2019
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But then again, maybe the prior is influential...

Anthony D computed profile likelihood:

Anthony: “Need more and different data”
David A. van Dyk PhyStat-ν 2019
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When Prior Matters – Simple Example

Suppose we are interested in correlation, ρ, of the heights of
father’s and their adult sons.
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When Prior Matters – Simple Example

What if we lost the coupling between fathers and sons?
Easy to estimate means and standard deviations
For correlation, ρ, prior will matter – consider three choices.
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Posterior for ρ with n = 0

n = 0, no bivariate pairs
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Posterior for ρ with n = 10

n = 10, the number of bivariate pairs
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If prior is overly influential, may have bigger problems.
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Posterior for ρ with n = 25

n = 25, the number of bivariate pairs
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Posterior for ρ with n = 100

n = 100, the number of bivariate pairs
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Back to Mass Hierarchy

Anthony D computed profile likelihood:

Anthony: “Need more and different data”
David A. van Dyk PhyStat-ν 2019
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Back to Mass Hierarchy

But there appears to be more to the data: (EMILIO C)

Emilio argues that distinguishing NH from IH is difficult,
but looks like more than three Gaussian variates.

David A. van Dyk PhyStat-ν 2019
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When The Prior Matters – Strategies

Avoid confusing "uniform" with "uninformative"
“The statisticians will kill me [for using uniform prior]” – Stefano

What does "uniform" mean? Depends on choice of scale.
On a unit hypercube of dimension D,

Pr(within ε of boundary) = 1− (1− 2ε)D.

With ε = 0.01:
D = 10 gives Pr(within ε of boundary) = 18%
D = 35 gives Pr(within ε of boundary) = 50%

... the curse of dimensionality (CHAD S)

Reference Prior: Maximize (some measure of, e.g, KL, Hellinger) expected
discrepancy between prior and posterior distributions. (JIM)

Sensitivity Analysis: Try multiple priors — and sample sizes.

Best to use subjective prior, derive a reference prior,
or – best of all – get more data!

David A. van Dyk PhyStat-ν 2019
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Feldman Cousins

Feldman-Cousins remains popular as ever
(ALEX H, NICHOLAS W, MATTEO A, CHAO Z, BANNANJE N)

Bob C provided a nice review and history.

Bannanje on Efficient Inference with Gaussian Processes
Use Gaussian Process to interpolate and save computing

Optimised Confidence Interval Search

I Use an acquisition function that proposes new points in ✓-space to explore based on GP
approximated p-value surface.

a(✓) =
X

↵i

| q̂(✓) � ↵i

�q̂(✓)
|�1

I Here, q̂(✓) is GP mean, �q̂(✓) is GP std-dev, ↵i is chosen to be (0.68, 0.90)

I a(✓) balances between exploration, i.e MC experiments at new points and exploitation, i.e
reducing GP error
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Results
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Can this overcome the computation cost of FC??

David A. van Dyk PhyStat-ν 2019
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CLS – Avoiding Exclusion Under an Insensitive Test

H0 HA
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H0 HA
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vanDykFig02.pdf   1   8/21/13   10:40 PM

(CHRISTOPHE B, CHAO Z)

Exclusion is unwarranted
Do not exclude H1 if both
1− p0 and 1− p1 are small

Read (2000) suggested excluding H1 only if

CLS =
1− p1

1− p0
=

Pr(T < tobs|H1)

Pr(T < tobs|H0)
≤ α.

Exclude H1 if T < tobs much less likely under H1 than under H0

Bob C: Better to report both p-values.
DvD: Three parameter sets: no sensitivity, excluded, not excluded.

David A. van Dyk PhyStat-ν 2019
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The Problem with P-values

The misuse of P-values:
Replace data with “data as extreme of more extreme”

– not particularly conservative.

Often mistakenly interpreted as Pr(H0), but:
Cannot be calibrated vis-vis Pr(H0).
Do not measure relative likelihood of hypotheses.
Can vastly overstate evidence for H1. (JIM)

May depend on bits of H0 that are of no interest.
Single filter for publication / judging quality of research.
Cherry-picking results based on p-value / publication bias.

Reviewers, Editors, and Readers want a simple
black-and-white rule: p < 0.05, or > 5σ.

But statistics is about quantifying uncertainty, not expressing certainty.
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Frequentist vs. Bayesian: No easy answers.
A Taxonomy of Tests

5σ Discovery Threshold

5σ is required for “discovery” (LOUIS)

High profile false discoveries led to conservative threshold
Treat Bump Location as known (multiple-testing) (DVD)

“What would you have done had you had different data”
Calibration, systematic errors, and model misspecification
Of course cranking down α does not address these issues

“In particle physics, this criterion has become a convention ...
but should not be interpreted literally 1.”

Bob: “Two 3.5σ results are better than one 5σ result.”
DvD: “Calibrated 3.5σ result is better than uncalibrated 5σ.”
Louis: “Extraordinary claims require extraordinary evidence.”
Thamaso “Can we agree not to quote more than 5σ??.”

David A. van Dyk PhyStat-ν 2019
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Frequentist vs. Bayesian: No easy answers.
A Taxonomy of Tests

The Problem with Priors
Bayesian methods have challenges of their own. (BOB C)

Bayes Factor =
p0(y)

p1(y)
with pi (y) =

∫
pi (y |θ)pi (θ)dθ.

Pr(H0 | y) =
p0(y)π0

p0(y)π0 + p1(y)π1
=

π0

π0 + π1(Bayes Factor)−1

Example:

Likelihood: y ∼ N(µ,1)

Test: µ = 0 vs µ 6= 0

Prior Dist’n: µ ∼ N(0, τ2)

Prior Pred.: y ∼ N(0,1 + τ2)
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Value of p1(y) depends on τ 2!
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Frequentist vs. Bayesian: No easy answers.
A Taxonomy of Tests

Choice of Prior Matters!

Bayes Factor (JIM B, BOB C, ALEX H, STEFANO G)

H0 : y ∼ N(0,1).

HA : y ∼ N(0,1 + τ2).

Observe y = 3
log(Bayes Factor) −15 −10 −5 0 5 10 15
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Must think hard about choice of prior and report!
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Frequentist vs. Bayesian: No easy answers.
A Taxonomy of Tests

Bayes Factors and Likelihood Ratios
Likelihood Ratio optimizes parameters, whereas Bayes Factor marginalizes.

Likelihood Ratio =
maxθ0 p0(y | θ0)

maxθ1 p1(y | θ1)
6= Bayes Factor =

∫
p0(y | θ0) p(θ0) dθ0∫
p1(y | θ1) p(θ1) dθ1

....unless there are no parameters under either model.

A Bayesian Occam’s Razor (BOB C, STEFANO G)

Suppose p(θi) are both essentially flat over range where corresponding
likelihoods are non-negligible.

Bayes Factor =
∫

p0(y | θ0) p(θ0) dθ0∫
p1(y | θ1) p(θ1) dθ1

≈ p(θ̂0)
∫

p0(y | θ0) dθ0

p(θ̂1)
∫

p1(y | θ1) dθ1

The term p(θ̂0)/p(θ̂1) is sensitive to dimension and scale.

At mode, multivariate normal prior ∝ 1/|Σ|d/2.

Bayes Factor penalizes larger models. ...and depends strongly on choice of prior.

Don’t hide your priors!
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A Taxonomy of Tests

Different types of tests involve different methods
Simple vs Simple
Nested I: One-sided tests
Nested II: Precise null (with H0 on boundary)
Nested III: Parameters undefined under H0

Non-Nested

In each case we can consider relative
advantages of p-values an Bayesian methods.

David A. van Dyk PhyStat-ν 2019
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Frequentist vs. Bayesian: No easy answers.
A Taxonomy of Tests

Simple vs Simple

Simple vs Simple
H0 and H1 are fully specified: no unknown parameters.
E.g., normal hierarchy vs inverted hierarchy.

Bayes Factor = p0(y)
p1(y) = Likelihood Ratio

P-values: log(Likelihood Ratio) ∼ NORMAL (large n) (ANDREY)

(Must use Monte Carlo to specify two null distributions.)

Bayesian: No problem with priors!
Methods give consistent results.

Andrey gives example when used for trigger
... but with small n not Gaussian

Everything is simple, but models rarely fully specified

David A. van Dyk PhyStat-ν 2019
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Frequentist vs. Bayesian: No easy answers.
A Taxonomy of Tests

Nested I: One-sided Tests

Nested I: One-sided Tests (JIM B)

H0 : θ ≤ θ0 versus H1 : θ ≥ θ0.
E.g., H0 : ∆m2

32 ≤ 0 versus H1 : ∆m2
32 > 0.

P-values: p-value = sup
θ≤θ0

Pr
(

T (y) ≥ T (yobs) | θ
)

(Use Wilks Thm.)

Bayesian: Avoid p0(y) and p2(y): Pr(H0 | y) = Pr(θ ≤ θ0 | y).

.

Requires only one model and one prior specification.
Can incorporate external knowledge into Bayesian
analysis via prior, e.g., |∆m2

32| = 2.43± 0.13.
Mass hierarchy can be handled this way (frequency or Bayesian)

...much easier than non-nested model comparison.

Again methods give consistent results.
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Frequentist vs. Bayesian: No easy answers.
A Taxonomy of Tests

Nested II: Precise Null (with H0 on boundary)

Nested II: Precise Null

f (yi |θ) = (1− λ)f0(yi |α) + λf1(yi |µ)

= background + Higgs

f1 is fully specified: i.e., µ is known.
H0 : λ = 0 (no discovery)
H1 : λ > 0 (discovery) 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

 

D
en

si
ty

No Higgs

Higgs 
 signal

µ

P-values: LRT: Wilks does not apply, use Chernoff.

µ Known!

Bayesian: Choice of priors on λ matters! (JIM B)

P-values� Pr(H0 | y).

Example: Neutrino-less Double beta decay (MATTEO A)
Bayes and P-value differ – why not report both?
“Important to understand” what each means.
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Frequentist vs. Bayesian: No easy answers.
A Taxonomy of Tests

Nested III: Precise Null (with Parameters Undefined Under H0)

Nested III: µ undefined under H0

f (yi |θ) = (1− λ)f0(yi |α) + λf1(yi |µ)

µ unknown, no value under H0.

H0 : λ = 0 versus H1 : λ > 0
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P-values: Bound global p-value
µ Unknown!

Look elsewhere effect, method of GV. (PHILLIP L)

Bayesian: Choice of priors on λ and µ matter!
Use prior on µ to correct for LEE.

Examples: How to correct for harmonic bumps? (PHILLIP L)
check out Sara Algeri’s arXiv:1701.06820 and 1803.03858

other examples (CHAO Z, NICHOLAS W, BIRGIT N )

Why are local p-values still reported?
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Frequentist vs. Bayesian: No easy answers.
A Taxonomy of Tests

Non-nested models

Non-nested models
two parameterized non-nested models

H0: γ-ray energy of known cosmic sources
H1: γ-ray energy of dark matter.

H0: normal hierarchy
H1: inverted hierarchy .

Is there a null model?
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P-values: Embed in mixture model and bound global p-value
or Monte Carlo (toys).

Bayesian: No problems in principle.
... but choice of prior may cause difficulties.

Best to avoid if you can! E.g., mass hierarchy.
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Outline

1 Model Building and Fitting
Model Building
Parameter Estimation
Interval Estimation and Upper Limits

2 Quantifying Discovery: Testing Hypotheses
Frequentist vs. Bayesian: No easy answers.
A Taxonomy of Tests

3 Strategies
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Strategies

What is a physicists to do?
Controlling false discovery is critical in physical sciences.

and itervals that contain the truth... some of the time!

Comparing p-values with a predetermined significant level
can control false discovery.... if used with care, e.g., no cherry picking!

When confronted with small p-values researchers
...even statisticians!!... may believe H0 is unlikely.
Bayesian solutions can better quantify likelihood of H0 / H1.
Solution: Compute both global p-value and Bayes Factor.

Careful
1 global corrections for p-values
2 choice and validation of prior distributions

remain challenging!
David A. van Dyk PhyStat-ν 2019
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