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Simple example
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� Define set of cuts to select possible signal.

� Expect background b (± error) from uninteresting sources.

� Observe n events

1. For n rather larger than b, quantify significance of deviation (strong
significance required, i.e. “5σ”).

2. For n ≈ b, establish upper limit on possible excess from interesting
new source.

� Background and calibration efficiencies (intensity of signal) should be
considered as nuisance parameters.

� Typically there are many search channels (different configurations in
which the particle could be produced and decay).
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Statistical model
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At Banff the following model was proposed:

Ni ∼ Poisson(λ1i ψ + λ2i),

Yi ∼ Poisson(λ2i ti),

Zi ∼ Poisson(λ1i ui),

� i = 1, . . . , c, where c is the number of search channels,

� Y and Z represent auxiliary independent experiments meant to measure
background and intensity respectively,

� ti and ui are known positive constants,

� different channels are assumed independent,

� Then the parameters are

– ψ, the interest parameter (signal of interest),

– λ = (λ11, λ21, . . . , λ1c, λ2c), the nuisance parameter.
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Likelihood
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� The proposed Poisson model has log likelihood

ℓ(ψ, λ) = log f(n, y, z;ψ, λ)

≡
c∑

i=1

{ni log(λ1i ψ + λ2i) + zi log λ1i

+ yi log λ2i − (ψ + ui)λ1i − (1 + ti)λ2i}

� A (3c, 2c+ 1) curved exponential family.

� A full exponential family with a single channel (c = 1).

� For physicists, ψ ≥ 0.

� But for the use of the model ψ > −λ2i/λ1i, for each i, so can have
ψ < 0, at least mathematically.

� Aim to use higher order likelihood inference for ψ.

� Details for this example in Davison and Sartori (2008, Statistical Science).
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� Parametric model f(y; θ) with (notional?) sample size n, log likelihood
ℓ(θ), observed information j(θ) = −∂2ℓ(θ)/∂θ2, MLE θ̂.

� If θ scalar, first order inference based on limiting N(0, 1) laws of

likelihood root, r(θ) = sign(θ̂ − θ)
[
2
{
ℓ(θ̂)− ℓ(θ)

}]1/2
;

score statistic, s(θ) = j(θ̂)−1/2∂ℓ(θ)/∂θ;

Wald statistic, t(θ) = j(θ̂)1/2(θ̂ − θ) :

as n→ ∞ have, for instance,

P {r(θ) ≤ robs} = Φ(robs) +O(n−1/2) ,

which yields tests and confidence sets for θ based on an observed robs.
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Higher order likelihood theory
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� For continuous responses, third order inference based on limiting N(0, 1)
distribution of modified likelihood root, also called modified directed
deviance,

r∗(θ) = r(θ) +
1

r(θ)
log

{
q(θ)

r(θ)

}
,

where q(θ) depends on model, can be s(θ), t(θ), or similar.

� Inference uses significance function

Φ{r∗(θ)}
·

∼ U(0, 1), for true θ.

� Level 1− 2α confidence interval contains those θ for which

α ≤ Φ{r∗(θ)} ≤ 1− α.
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With nuisance parameters?
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� When θ = (ψ, λ), with ψ scalar

r(ψ) = sign(ψ̂ − ψ)
[
2
{
ℓ(θ̂)− ℓ(θ̂ψ)

}]1/2

where θ̂ψ is the MLE of θ for fixed ψ.

� The function q(ψ) is

q(ψ) =
| ϕ(θ̂)− ϕ(θ̂ψ) ϕλ(θ̂ψ) |

| ϕθ(θ̂) |

{
| j(θ̂) |

| jλλ(θ̂ψ) |

}1/2

where ϕ (which has the dimension of θ) is the canonical parameter of a
local exponential family approximation to the model and where, for
example, ϕθ denotes the matrix ∂ϕ/∂θT.
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� Parameterization-invariant.

� Computation almost as easy as first order asymptotics.

� Error O(n−3/2) in continuous response models.

� Gives continuous approximation to discrete response models.

� Relative (not absolute) error, so highly accurate in tails.

� Bayesian version with prior π uses

qB(ψ) = ℓ′p(ψ)jp(ψ̂)
−1/2





∣∣∣jλλ(θ̂ψ)
∣∣∣

∣∣∣jλλ(θ̂)
∣∣∣





1/2

π(θ̂)

π(θ̂ψ)
,

where ℓp(ψ) = ℓ(θ̂ψ) is the profile log likelihood for ψ, and jp = −ℓ′′p is
the corresponding information. Again, easy computation and high
accuracy.
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� Aim for prior that is noninformative for ψ in presence of nuisance parameter ξ.

� Tibshirani (1989, Biometrika) shows that this prior is proportional to

|iψψ(ψ, ξ)|
1/2g(ξ) dψdξ,

when ξ is orthogonal to ψ and

– iψψ(ψ, ξ) denotes the (ψ, ψ) element of the Fisher information matrix,

– g(ξ) is an arbitrary positive function satisfying mild regularity conditions.

� This gives a Jeffreys prior for ψ that is also a matching prior: it gives (1− α)
one-sided Bayesian posterior confidence intervals that contain ψ with frequentist
probability (1− α) +O(n−1).

� Calculations are (miraculously) explicit for the Poisson model.
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Brazzale, Davison, Reid (2007) Applied Asymptotics, Cambridge University Press.
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� The data are

n y z t u

1 8 14 27 80

� The MLE of ψ is 4.02.

� The p-value for testing ψ = 0 versus ψ > 0 is 0.16276 for r and 0.12714
for r∗, both indicating almost no evidence of signal.

� The 0.99 lower and upper limits for ψ obtained from r are

−2.64 ( 7→ 0), 33.84.

� The analogous limits obtained from r∗ are

−2.60 ( 7→ 0), 36.52.



ÉC OL E  POL Y T EC H N I Q U E
FÉ DÉRA LE  D E  L A U SAN N E

Single channel: An example
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One channel: Coverage of confidence limits
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Multichannel simulation, c = 10
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TABLE 3

Empirical coverage probabilities in a multiple-channel simulation

with 10,000 replications, ψ = 2, β = (0.20,0.30,0.40, . . . ,1.10),

γ = (0.20,0.25,0.30, . . . ,0.65), t = (15,17,19, . . . ,33) and

u = (50,55,60, . . . ,95)

Probability r r
∗

r
∗

B

0.0100 0.0099 0.0101 0.0109

0.0250 0.0244 0.0255 0.0273

0.0500 0.0493 0.0519 0.0542

0.1000 0.0967 0.1012 0.1035

0.5000 0.4869 0.5043 0.5027

0.9000 0.8900 0.9013 0.8942

0.9500 0.9421 0.9499 0.9427

0.9750 0.9687 0.9759 0.9689

0.9900 0.9875 0.9913 0.9864

Figures in bold differ from the nominal level by more than simula-

tion error.



ÉC OL E  POL Y T EC H N I Q U E
FÉ DÉRA LE  D E  L A U SAN N E

Multichannel simulation, c = 10
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� Modified likelihood root can yield highly accurate inference in this toy
problem.

� It’s pretty good even with many nuisance parameters.

� Some (boundary) cases give problems with q(ψ): then we use r(ψ).

� Noninformative Bayesian solution provides (slightly) worse confidence
intervals, but is quite feasible, could instead use an informative prior.
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� Modified likelihood root can yield highly accurate inference in this toy
problem.

� It’s pretty good even with many nuisance parameters.

� Some (boundary) cases give problems with q(ψ): then we use r(ψ).

� Noninformative Bayesian solution provides (slightly) worse confidence
intervals, but is quite feasible, could instead use an informative prior.

Now for neutrinos . . .
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� Discussion based on Heavens and Sellentin (2018, arXiv): Objective Bayesian analysis of

neutrino masses and hierarchy, suggested by Louis.

� Neutrino masses: 0 ≤ µL ≤ µM ≤ µH meV

� Two hierarchies: normal and inverted

� Measurements y1 = 75meV2, y2 = 2524meV2, and probability models

– normal hierarchy:

y1 ∼ N (µ2

M − µ2

L, 1.8
2),

y2 ∼ N{µ2

H − (µ2

M + µ2

L)/2, 40
2},

– inverted hierarchy:

y1 ∼ N (µ2

H − µ2

M , 1.82),

y2 ∼ N{(µ2

H + µ2

M )/2− µ2

L, 40
2}

� 95% credible region: P(µL + µM + µH ≤ 120meV) = 0.95, interpreted as penalized
likelihood corresponding to y3 = 0 observed from half-normal distribution

|N{µL + µM + µH , (120/1.96)2}|.

� Possible typo: replace y2 = 2524 by y2 = 2514 in inverted case?
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First idea
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� Normal hierarchy indicated if

µ2H − µ2M > µ2M − µ2L ⇔ ψ = µ2H + µ2L − 2µ2M > 0,

so try and use higher order methods to test this.

� As a warm-up, try testing non-nested hypotheses:

– Cox (1961, Tests of Separate Families of Hypotheses, 4th Berkeley
Symposium),

– Cox (1962, Further results on tests of separate families of hypotheses,
JRSSB),

– massive literature in econometrics,

� Boils down to use of likelihood ratios for the models.
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Separate families test with neutrino data
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� Natural test statistic is difference of maximised log likelihoods,

T = 2
(
ℓ̂Normal − ℓ̂Inverted

)
,

with observed value tobs = 1.748.

� T
·

∼ normal with unknown mean and variance.

� We estimate the significance probabilities for testing the normal and inverted
models,

pNormal = PNormal(T ≤ tobs), pInverted = PInverted(T ≥ tobs)

by simulating data from the best-fitting normal and inverted models, and get

pNormal ≈ 0.44, pInverted ≈ 0.55,

so the data do not distinguish the models.

� Equivalent to (two) bootstrap hypothesis tests (Davison and Hinkley, 1997,
Bootstrap Methods and their Application, Chapter 4).
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Profile log likelihood for µL
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� On reflection the result is obvious: there are three parameters to match the means of y1
and y2, and this can be done (almost) perfectly:

– normal model: µL = 0.238, µM = 8.665, µH = 50.611, E(y1) = 75.018,
E(y2) = 2523.90,

– inverted model: µL = 0.009, µM = 49.856, µH = 50.603, E(y1) = 75.000,
E(y2) = 2523.14,

so the only difference between the fits is due to the penalty, which is larger for the
inverted model, for which µL + µM + µH ≈ 100, whereas for the normal model,
µL + µM + µH ≈ 59.

� The same argument applies to Bayesian analyses: the log odds depends only on the
extent that the credible region for the sum of masses favours the normal model, and the
effects of a prior.

� Check: replace 120meV by stronger penalty P(µL + µM + µH ≤ 12meV) = 0.95, which
disfavours the inverted hierarchy even more, and now get

pNormal ≈ 0.72, pInverted ≈ 0.024,

so we would reject the inverted model at the 5% level, as expected.

� Conclusion: more (but different!) data are needed to distinguish the hierarchies.
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