

# Almost-perfect Signal Detection

Anthony Davison







- $\Box$  Define set of cuts to select possible signal.
- $\Box$  Expect background b (± error) from uninteresting sources.
- $\Box$  Observe *n* events
  - 1. For *n* rather larger than *b*, quantify **significance** of deviation (strong significance required, i.e. " $5\sigma$ ").
  - 2. For  $n \approx b$ , establish **upper** limit on possible excess from interesting new source.
- Background and calibration efficiencies (intensity of signal) should be considered as nuisance parameters.
- Typically there are many search channels (different configurations in which the particle could be produced and decay).



At Banff the following model was proposed:

- $N_i \sim \mathsf{Poisson}(\lambda_{1i}\psi + \lambda_{2i}),$
- $Y_i \sim \mathsf{Poisson}(\lambda_{2i} t_i),$
- $Z_i \sim \operatorname{Poisson}(\lambda_{1i} u_i),$
- $\Box$   $i = 1, \ldots, c$ , where c is the number of search channels,
- $\Box$  Y and Z represent auxiliary independent experiments meant to measure background and intensity respectively,
- $\Box$   $t_i$  and  $u_i$  are known positive constants,
- □ different channels are assumed independent,
- $\Box$  Then the parameters are
  - $\psi$ , the interest parameter (signal of interest),
  - $\lambda = (\lambda_{11}, \lambda_{21}, \dots, \lambda_{1c}, \lambda_{2c})$ , the nuisance parameter.

#### Likelihood



□ The proposed Poisson model has log likelihood

$$\ell(\psi, \lambda) = \log f(n, y, z; \psi, \lambda)$$
  

$$\equiv \sum_{i=1}^{c} \{n_i \log(\lambda_{1i} \psi + \lambda_{2i}) + z_i \log \lambda_{1i} + y_i \log \lambda_{2i} - (\psi + u_i) \lambda_{1i} - (1 + t_i) \lambda_{2i}\}$$

- $\Box$  A (3c, 2c+1) curved exponential family.
- $\Box$  A full exponential family with a single channel (c = 1).
- $\Box$  For physicists,  $\psi \geq 0$ .
- But for the use of the model  $\psi > -\lambda_{2i}/\lambda_{1i}$ , for each i, so can have  $\psi < 0$ , at least mathematically.
- $\Box$  Aim to use **higher order likelihood inference** for  $\psi$ .
- Details for this example in Davison and Sartori (2008, *Statistical Science*).



Detecting a Signal

Higher Order

Likelihood ▷ Inference

First order

Higher order

Nuisance parameters

Properties

Bayes

Application to Signal Detection

Neutrino ordering

## **Higher Order Likelihood Inference**



- □ Parametric model  $f(y; \theta)$  with (notional?) sample size n, log likelihood  $\ell(\theta)$ , observed information  $j(\theta) = -\partial^2 \ell(\theta) / \partial \theta^2$ , MLE  $\hat{\theta}$ .
- $\Box$  If  $\theta$  scalar, first order inference based on limiting N(0,1) laws of

as  $n \to \infty$  have, for instance,

$$P\{r(\theta) \le r_{obs}\} = \Phi(r_{obs}) + O(n^{-1/2}),$$

which yields tests and confidence sets for  $\theta$  based on an observed  $r_{\rm obs}$ .

□ For continuous responses, third order inference based on limiting N(0,1) distribution of **modified likelihood root**, also called **modified directed deviance**,

$$r^*(\theta) = r(\theta) + \frac{1}{r(\theta)} \log\left\{\frac{q(\theta)}{r(\theta)}\right\},$$

where  $q(\theta)$  depends on model, can be  $s(\theta)$ ,  $t(\theta)$ , or similar.

□ Inference uses **significance function** 

 $\Phi\{r^*(\theta)\} \stackrel{\cdot}{\sim} U(0,1), \quad \text{ for true } \theta.$ 

 $\Box$  Level  $1 - 2\alpha$  confidence interval contains those  $\theta$  for which

 $\alpha \le \Phi\{r^*(\theta)\} \le 1 - \alpha.$ 







 $\Box$  When  $\theta = (\psi, \lambda)$ , with  $\psi$  scalar

$$r(\psi) = \operatorname{sign}(\widehat{\psi} - \psi) \left[ 2 \left\{ \ell(\widehat{\theta}) - \ell(\widehat{\theta}_{\psi}) \right\} \right]^{1/2}$$

where  $\hat{\theta}_{\psi}$  is the MLE of  $\theta$  for fixed  $\psi$ . The function  $q(\psi)$  is

$$q(\psi) = \frac{\mid \varphi(\widehat{\theta}) - \varphi(\widehat{\theta}_{\psi}) \mid \varphi_{\lambda}(\widehat{\theta}_{\psi}) \mid}{\mid \varphi_{\theta}(\widehat{\theta}) \mid} \left\{ \frac{\mid j(\widehat{\theta}) \mid}{\mid j_{\lambda\lambda}(\widehat{\theta}_{\psi}) \mid} \right\}^{1/2}$$

where  $\varphi$  (which has the dimension of  $\theta$ ) is the canonical parameter of a local exponential family approximation to the model and where, for example,  $\varphi_{\theta}$  denotes the matrix  $\partial \varphi / \partial \theta^{T}$ .

 $\square$ 



- □ Parameterization-invariant.
- □ Computation almost as easy as first order asymptotics.
- $\Box$  Error  $O(n^{-3/2})$  in continuous response models.
- □ Gives continuous approximation to discrete response models.
- □ Relative (not absolute) error, so highly accurate in tails.
- $\Box$  **Bayesian version** with prior  $\pi$  uses

$$q_B(\psi) = \ell'_{\rm p}(\psi) j_{\rm p}(\widehat{\psi})^{-1/2} \left\{ \frac{\left| j_{\lambda\lambda}(\widehat{\theta}_{\psi}) \right|}{\left| j_{\lambda\lambda}(\widehat{\theta}) \right|} \right\}^{1/2} \frac{\pi(\widehat{\theta})}{\pi(\widehat{\theta}_{\psi})},$$

where  $\ell_p(\psi) = \ell(\hat{\theta}_{\psi})$  is the **profile log likelihood** for  $\psi$ , and  $j_p = -\ell''_p$  is the corresponding information. Again, easy computation and high accuracy.



Aim for prior that is noninformative for  $\psi$  in presence of nuisance parameter  $\xi$ . Tibshirani (1989, *Biometrika*) shows that this prior is proportional to

 $|i_{\psi\psi}(\psi,\xi)|^{1/2}g(\xi)\,\mathrm{d}\psi\mathrm{d}\xi,$ 

when  $\xi$  is orthogonal to  $\psi$  and

- $i_{\psi\psi}(\psi,\xi)$  denotes the  $(\psi,\psi)$  element of the Fisher information matrix,
- $g(\xi)$  is an arbitrary positive function satisfying mild regularity conditions.
- This gives a Jeffreys prior for  $\psi$  that is also a matching prior: it gives  $(1 \alpha)$  one-sided Bayesian posterior confidence intervals that contain  $\psi$  with frequentist probability  $(1 \alpha) + O(n^{-1})$ .
- □ Calculations are (miraculously) explicit for the Poisson model.





Brazzale, Davison, Reid (2007) Applied Asymptotics, Cambridge University Press.

http://stat.epfl.ch

January 2019 – slide 12



Detecting a Signal

Higher Order Likelihood Inference

Application to ▷ Signal Detection Single channel

Simulation

Discussion

Neutrino ordering

# **Application to Signal Detection**



 $\Box$  The data are

| n | y | z  | t  | u  |
|---|---|----|----|----|
| 1 | 8 | 14 | 27 | 80 |

 $\Box$  The MLE of  $\psi$  is 4.02.

- $\Box \quad \text{The } p\text{-value for testing } \psi = 0 \text{ versus } \psi > 0 \text{ is } 0.16276 \text{ for } r \text{ and } 0.12714 \text{ for } r^* \text{, both indicating almost no evidence of signal.}$
- $\Box$  The 0.99 lower and upper limits for  $\psi$  obtained from r are

 $-2.64 \quad (\mapsto 0), \qquad 33.84.$ 

 $\Box$  The analogous limits obtained from  $r^*$  are

$$-2.60 \quad (\mapsto 0), \qquad 36.52.$$

#### Single channel: An example





#### **One channel: Coverage of confidence limits**





Target coverage (red), coverage of  $r^*$  (black), coverage of  $r^*_B$  (dashes), as a function of interest parameter  $\psi$ .

http://stat.epfl.ch

January 2019 - slide 16



#### TABLE 3

*Empirical coverage probabilities in a multiple-channel simulation with* 10,000 *replications,*  $\psi = 2$ ,  $\beta = (0.20, 0.30, 0.40, ..., 1.10)$ ,  $\gamma = (0.20, 0.25, 0.30, ..., 0.65)$ , t = (15, 17, 19, ..., 33) and u = (50, 55, 60, ..., 95)

| Probability | r      | r*     | $r_B^*$ |
|-------------|--------|--------|---------|
| 0.0100      | 0.0099 | 0.0101 | 0.0109  |
| 0.0250      | 0.0244 | 0.0255 | 0.0273  |
| 0.0500      | 0.0493 | 0.0519 | 0.0542  |
| 0.1000      | 0.0967 | 0.1012 | 0.1035  |
| 0.5000      | 0.4869 | 0.5043 | 0.5027  |
| 0.9000      | 0.8900 | 0.9013 | 0.8942  |
| 0.9500      | 0.9421 | 0.9499 | 0.9427  |
| 0.9750      | 0.9687 | 0.9759 | 0.9689  |
| 0.9900      | 0.9875 | 0.9913 | 0.9864  |

Figures in bold differ from the nominal level by more than simulation error.





Target coverage (red), coverage of  $r^*$  (black), coverage of  $r^*_B$  (dashes), as a function of interest parameter  $\psi$ .

http://stat.epfl.ch

January 2019 – slide 18



- Modified likelihood root can yield highly accurate inference in this toy problem.
- □ It's pretty good even with many nuisance parameters.
- $\Box$  Some (boundary) cases give problems with  $q(\psi)$ : then we use  $r(\psi)$ .
- □ Noninformative Bayesian solution provides (slightly) worse confidence intervals, but is quite feasible, could instead use an informative prior.



- Modified likelihood root can yield highly accurate inference in this toy problem.
- □ It's pretty good even with many nuisance parameters.
- $\Box$  Some (boundary) cases give problems with  $q(\psi)$ : then we use  $r(\psi)$ .
- Noninformative Bayesian solution provides (slightly) worse confidence intervals, but is quite feasible, could instead use an informative prior.

# Now for neutrinos . . .



Detecting a Signal

Higher Order Likelihood Inference

Application to Signal Detection

Neutrino ordering Simulation

### Neutrino ordering

#### Fun with neutrinos



- Discussion based on Heavens and Sellentin (2018, arXiv): Objective Bayesian analysis of neutrino masses and hierarchy, suggested by Louis.
- $\Box$  Neutrino masses:  $0 \le \mu_L \le \mu_M \le \mu_H$  meV
- □ Two hierarchies: normal and inverted
- $\Box$  Measurements  $y_1 = 75 \text{meV}^2$ ,  $y_2 = 2524 \text{meV}^2$ , and probability models
  - normal hierarchy:

$$y_1 \sim \mathcal{N}(\mu_M^2 - \mu_L^2, 1.8^2),$$
  
 $y_2 \sim \mathcal{N}\{\mu_H^2 - (\mu_M^2 + \mu_L^2)/2, 40^2\},$ 

- inverted hierarchy:

$$y_1 \sim \mathcal{N}(\mu_H^2 - \mu_M^2, 1.8^2),$$
  
 $y_2 \sim \mathcal{N}\{(\mu_H^2 + \mu_M^2)/2 - \mu_L^2, 40^2\}$ 

95% credible region:  $P(\mu_L + \mu_M + \mu_H \le 120 \text{meV}) = 0.95$ , interpreted as penalized likelihood corresponding to  $y_3 = 0$  observed from half-normal distribution

$$|\mathcal{N}\{\mu_L + \mu_M + \mu_H, (120/1.96)^2\}|.$$

Possible typo: replace  $y_2 = 2524$  by  $y_2 = 2514$  in inverted case?

http://stat.epfl.ch



□ Normal hierarchy indicated if

$$\mu_{H}^{2} - \mu_{M}^{2} > \mu_{M}^{2} - \mu_{L}^{2} \quad \Leftrightarrow \quad \psi = \mu_{H}^{2} + \mu_{L}^{2} - 2\mu_{M}^{2} > 0,$$

so try and use higher order methods to test this.

- □ As a warm-up, try testing non-nested hypotheses:
  - Cox (1961, Tests of Separate Families of Hypotheses, 4th Berkeley Symposium),
  - Cox (1962, Further results on tests of separate families of hypotheses, JRSSB),
  - massive literature in econometrics,
- □ Boils down to use of likelihood ratios for the models.



□ Natural test statistic is difference of maximised log likelihoods,

$$T = 2\left(\widehat{\ell}_{\text{Normal}} - \widehat{\ell}_{\text{Inverted}}\right),$$

with observed value  $t_{\rm obs} = 1.748$ .

- $\Box \quad T \stackrel{.}{\sim} \,$  normal with unknown mean and variance.
- We estimate the significance probabilities for testing the normal and inverted models,

$$p_{\text{Normal}} = P_{\text{Normal}}(T \le t_{\text{obs}}), \quad p_{\text{Inverted}} = P_{\text{Inverted}}(T \ge t_{\text{obs}})$$

by simulating data from the best-fitting normal and inverted models, and get

$$p_{\text{Normal}} \approx 0.44, \quad p_{\text{Inverted}} \approx 0.55,$$

so the data do not distinguish the models.

 Equivalent to (two) bootstrap hypothesis tests (Davison and Hinkley, 1997, Bootstrap Methods and their Application, Chapter 4).

http://stat.epfl.ch





 $2\ell_{\rm p}(\mu_L)$  for normal hierarchy (black) and inverted hierarchy (red)



- On reflection the result is obvious: there are three parameters to match the means of  $y_1$  and  $y_2$ , and this can be done (almost) perfectly:
  - normal model:  $\mu_L = 0.238$ ,  $\mu_M = 8.665$ ,  $\mu_H = 50.611$ ,  $E(y_1) = 75.018$ ,  $E(y_2) = 2523.90$ ,
  - inverted model:  $\mu_L = 0.009$ ,  $\mu_M = 49.856$ ,  $\mu_H = 50.603$ ,  $E(y_1) = 75.000$ ,  $E(y_2) = 2523.14$ ,

so the only difference between the fits is due to the penalty, which is larger for the inverted model, for which  $\mu_L + \mu_M + \mu_H \approx 100$ , whereas for the normal model,  $\mu_L + \mu_M + \mu_H \approx 59$ .

- □ The same argument applies to Bayesian analyses: the log odds depends only on the extent that the credible region for the sum of masses favours the normal model, and the effects of a prior.
- Check: replace 120meV by stronger penalty  $P(\mu_L + \mu_M + \mu_H \le 12 \text{meV}) = 0.95$ , which disfavours the inverted hierarchy even more, and now get

```
p_{\text{Normal}} \approx 0.72, \quad p_{\text{Inverted}} \approx 0.024,
```

so we would reject the inverted model at the 5% level, as expected.

Conclusion: more (but different!) data are needed to distinguish the hierarchies.





http://stat.epfl.ch