Imperial College London

Look-elsewhere effect in neutrino oscillation searches:

Phill Litchfield, Abbey Waldron

Introduction

Phystat-ν [Kashiwa] talk by S. Algeri

 How to frame discrete models (e.g. mass ordering) as a Look-Elsewhere Effect (LEE).

Followed up 2017

- Looks like we could use this approach for T2K MO [ask me over coffee break]
- Wanted to first understand this approach to LEE
- But no time to actually work on it
- **2018** out of the blue, Abbey contacted to ask if I had any interesting neutrino / computing projects to work on
- Why, yes! Yes I do.

LEE in discrete tests

If I observe a 3σ deviation from my Null Hypothesis, this means:

the Null Hypothesis is truethe probability of this occurring by chance is 0.27%

But if I looked at 100 different data sets, how surprised should I be? If the probability of at least one occurrence in τ trials is P_{τ} then:

$$P_{100} = 1 - \overline{P_{100}} = 1 - (\overline{P_1})^{100} = 1 - (1 - P_1)^{100}$$

 $\simeq 100 \times P_1$

For this example:

a result with 3σ local significance becomes 1.2σ global significance

$\boldsymbol{Z_1}$	Z_{100}
2σ	0.01σ
3σ	1.2σ
4σ	2.7σ
5σ	4.0σ

LEE in continuous tests

Imagine a collider experiment looking for a resonance.

- There is a known background
- There might be a signal resonance somewhere in the search range

⇒ There is a Look-Elsewhere Effect here as well.

But how to quantify it?

The "Thumb rule"

Quasi-discrete approach: break the search range up into sub-ranges

- Wide enough that ~1 resonance can exist within each one...
- Then as in the discrete case $P_{\tau} = \tau \times P_{1}$

This **assumes** we are searching at only 7 specific values of η

Still better than ignoring the issue...

The "Thumb rule"

Quasi-discrete approach: break the search range up into sub-ranges

- Wide enough that ~1 resonance can exist within each one...
- Then as in the discrete case $P_{\tau} = \tau \times P_1$

This **assumes** we are searching at only 7 specific values of η

Still better than ignoring the issue... but not very realistic

Neutrino oscillation searches

In searches for new oscillation scales we have:

$$P(\nu_{\alpha} \to \nu_{\beta}) = \delta_{\alpha\beta} \pm \sin^2 2\theta \sin^2 \frac{\Delta m^2 L}{4E}$$

Similar to bump searches:

- Location parameter (Δm^2)
- Magnitude ($\sin^2 2\theta$)

But there is a difference:

- The signal is not localised.
- So, how many searches?

How to handle this?

In searches for new oscillation

ales we have:

In the neutrino case: $(\nu_{\alpha} \rightarrow \nu_{\beta}) = \delta_{\alpha\beta} \pm \sin^2 2\theta \sin^2 \theta$

- There's no approach equivalent to dividing the spectrum into sub-ranges.
- But the concept of a tuneable search parameter still exists —

how can we use that?

So, how many searches?

Resonance search by scanning the location parameter

Looking for a 'bump' on top of a (known) background B

• The bump is a localised feature, parameterised by its **location** (η) , and **magnitude** (μ)

If we already knew to search at η_0 : standard results (Wilks, Chernoff) for significance, based on log-likelihood ratio $q(\hat{\mu}, \eta_0)$

But if the search location $\hat{\eta}$ is determined by fitting data, these results will overestimate the significance:

• By definition $q(\hat{\mu}, \hat{\eta}) = \max_{\eta} \{q(\hat{\mu}(\eta), \eta)\} \ge \underbrace{q(\hat{\mu}(\eta_0), \eta_0)}_{\rightarrow \chi^2 \text{ distribution}}$

Physicists: "Look-Elsewhere effect"

Statisticians: " η is only present under the alternative hypothesis"

Davies bound

Because of the LEE:

$$P(q(\hat{\eta}) > c) > P(q_{\text{fix}} > c)$$

Davies [1977 & 1987] showed that:

$$P(q(\hat{\eta}) > c) < P(q_{\text{fix}} > c) + \langle N(c) \rangle$$

Where $\langle N(c) \rangle$ is the *expected* number of times q goes above the level c when scanned across η

This is a useful result! Although it is still not exact, it bounds the significance from the other (conservative) side

Gross & Vitells extension

For a
$$\chi^2$$
 test: $P(q_{\text{fix}} > c) = P(\chi_s^2 > c)$ and:

Davies 1987

$$\langle N(c) \rangle = \left[\frac{c^{(s-1)}e^{-c}}{\pi \ 2^s} \right]^{1/2} \frac{1}{\Gamma((s+1)/2)} \int_L^U I(\eta) \, \mathrm{d}\eta$$

Gross & Vitells [2010] point out that

- 1. The hard part (the integral) is independent of the threshold.
- 2. The expectation $\langle N(c) \rangle$ can be calculated numerically at some low threshold value (c_0) and evolved to the level of interest (c)

$$P(q(\hat{\eta}) > c) < P(\chi_s^2 > c) + \langle N(c_0) \rangle e^{-(c-c_0)/2} \underbrace{\left(\frac{c}{c_0}\right)^{(s-1)/2}}_{\text{s=1 here}}$$
Evaluate
with MC

23/01/2019

Phill Litchfield

Gross-Vitells example

Gross-Vitells example

Use in LHC searches

Most LHC resonance searches now use this approach. Written in physicists jargon:

$$P(q(\hat{\eta}) > c) \rightarrow p_{\text{global}}$$

$$P(\chi_s^2 > c) \to p_{\text{local}}$$

 $c = z^2$ (where z is the significance)

$$s = N_{\text{dof}} = 1$$

We then have:

$$p_{\text{global}} = p_{\text{local}} + k e^{-z^2/2}$$

and this z dependency is used to extrapolate from lower-significance MC toys

Sterile neutrino searches

Looking at this approach for neutrino oscillation searches.

Disappearance (◀) or appearance (▶) channels

Questions to investigate

High energy regime

 Finite energy resolution washes out location parameter.

Low energy regime

 Location parameter becomes degenerate with the strength parameter

In both cases we transition back to a single degree-of-freedom;

How will this affect the LEE correction?

-- Stop Press --

Poster "Statistical methods and issues in sterile neutrino searches" by B.Neumair → Covers similar ideas & connection back to F&C

More questions to investigate

Behaviour in **high-energy regime** also depends on how "normalisation" is handled.

 Dis/appearance not the (direct) cause

In the **intermediate energy regime**, possible correlation between harmonics?

Application to neutrinos

Toy study:

- Point like reactor and detector with 30m baseline
 - [Reality: both reactors & detectors extended over ~m]
- Flux based on RENO 2018 data release
- Fixed 0.2 MeV energy resolution.

[Typical: ~10% resolution; so worse >4MeV]

- Free normalisation (i.e. shape only-analysis)
 - Fixed or constrained normalisations have different large Δm^2 behaviour
 - Multi-baseline experiments effectively do shape-only analyses, but several (L,E) schemes in use: ratios, averaging over baselines, ...

Application to neutrinos

Compared to G-V toy study (right), notice:

- No visual mapping to Δm^2
- Much higher dynamic range

Better resolution
Sensitive to 'harmonic' solutions

More examples

High Δm^2 fits have tail structure – improve E resolution model.

More examples

Adjacent harmonic aliases will be at $(n/n + 2)\Delta m^2$

Dips \Rightarrow odd-nPeaks \Rightarrow even-n

 \star /a ≈ 5/3 fits the 4.4 MeV dip.

 \star /**b** ≈ 2/3 would map a peak to a dip, so this is not an alias.

Summary

Sterile neutrino searches should account for the Look-Elsewhere Effect

- Below $\sim 2.5\sigma$, can just do B/G-only toys.
- But not so easy for 'interesting' results
- Note: Better resolution means local value is more wrong

Davies / Gross & Vitells method looks usable for estimating global significance for reactor searches

- But not trivial to investigate
- Normalisation, harmonic and small $-\Delta m^2$ degeneracies need to be checked & understood, but seem okay so far.

Should be equally viable for (e.g.) SBN appearance at FNAL

Extensions & references

Davis '87 result covers χ^2 -like statistics. If instead use *amplitude* of oscillation as a test statistic, can use similar relationship from Davis '77

Tests of 3+n models simply extend this to χ^2 with n d.o.f. Generalised form already exists.

Also want to get back to applying this to MO...

Gross & Vitells: https://inspirehep.net/record/854732

Davies '77: Biometrika, 64, 247-254

Davies '87: https://inspirehep.net/record/854290

RENO flux: https://inspirehep.net/record/1676077

Imperial College London

Extra slides

Letting η be continuous

Could test only at wide-spaced values of η , but this is very limiting.

Instead, consider a test statistic $T(\mu, \eta)$.

For an *assumed* value η_0

we can find the best fit value $\hat{\mu}(\eta_0)$ that maximises T:

- ✓ Obeys Wilks' theorem → significance can be estimated from χ^2
- $\stackrel{\checkmark}{\sim}$ Significance only meaningful if the assumption $\eta = \eta_0$ is true.

Fitting for η

Could test only at wide-spaced values of η , but this is very limiting.

Instead, consider a test statistic $T(\mu, \eta)$.

Most commonly:
$$T = -2 \ln \frac{\mathcal{L}(B)}{\mathcal{L}(uS(n) + B)}$$

Instead of assuming η_0

we can find the 2D best fit value $(\hat{\mu}, \hat{\eta})$. But by definition:

$$T(\hat{\mu}, \hat{\eta}) = \max_{\eta} \{T(\hat{\mu}(\eta), \eta)\} \ge T(\hat{\mu}(\eta_0), \eta_0)$$

The RHS obeys Wilks' theorem, so the LHS must not!

Trial factors

In the discrete case we had that $P_{\tau} \simeq \tau P_1$, (provided $P_1 \ll 1$)

The factor τ is generalised to a non-integer **trial factor**:

$$\tau = \frac{P(T(\hat{\eta}) > c)}{P(T(\eta_0) > c)} = \frac{P(T(\hat{\eta}) > c)}{P(\chi_s^2 > c)} \Longrightarrow_{s=1} \frac{P(T(\hat{\eta}) > c)}{\sqrt{c}}$$

With which one can convert a "local" significance to a "global" one.

Or if you prefer, an effective number of search regions

The expression derived for this is:
$$\left(\tau_{s=1} \simeq 1 + \frac{\sqrt{c}}{2} \int_{L}^{U} I(\eta) \, \mathrm{d}\eta \right)$$

[The integral is deducible from the small threshold $\langle N(c_0) \rangle$]

Use in matter effect

Testing non-nested models

Blennow M. et al., JHEP, 2014 - Assumptions

...BUT

To make it work we need:

- The x_1, \ldots, x_B are independent and approximately Gaussian. (If not independent, the variance is no longer as simple as $4T_0$.)
- We need assumptions similar to those required by Wilks' theorem.

PLUS one (or more) of the following:

- **1** There are no free parameters α and β .
- OR The hyperplanes of the two hypotheses at their minima are parallel, i.e.,

$$\frac{\partial f(y_i, \alpha)}{\partial \alpha} \bigg|_{\alpha = \alpha_{\min}} = \frac{\partial g(y_i, \beta)}{\partial \beta} \bigg|_{\beta_{\min}}.$$

This is very restrictive!

<u>E.g.:</u> Let $f(\alpha) = \alpha$, $\alpha \in [0; 10]$, $g(\beta) = \beta^2$, $\beta \in [15; 20]$ and $\beta_{\mathsf{min}} = 1$

$$\left. \frac{dN}{d\delta_{CP}} \right|_{NO} \neq \left. \frac{dN}{d\delta_{CP}} \right|_{IO}$$

$$\frac{dN}{d\delta_{CP}}\bigg|_{IO} = \frac{\partial f(\alpha)}{\partial \alpha}\bigg|_{\forall \alpha \in [0;10]} \neq \frac{\partial g(\beta)}{\partial \beta}\bigg|_{\beta=1} = 2 \quad \Rightarrow \text{NOT OK.}$$

3 OR if T_0 much greater than the number of parameters in the hypothesis.

This

condition

Is broken?