A new unified perspective on the problem of limited Monte Carlo for likelihood calculations

Based on 1712.01293 and "to be published" (in a few days on arXiv)

Thorsten Glüsenkamp, Phystat-ν, CERN, Jan. 2019

Example Poisson (1 bin):

$$\frac{e^{-\sum w_i \cdot \sum w_i^k}}{k!}$$

 $MC \approx 0.1DATA$

Example Poisson (1 bin):

$$\frac{e^{-\sum w_i \cdot \sum w_i^k}}{k!}$$

Example Poisson (1 bin):

$$\frac{e^{-\sum w_i \cdot \sum w_i^k}}{k!}$$

Example Poisson (1 bin):

$$\frac{e^{-\sum w_i \cdot \sum w_i^k}}{k!}$$

Barlow, Beeston (93)

that these are damped by a factor N_D/N_j , but we cannot hope that this is small. There is a general rule of thumb that the MC samples should be ten times larger than the data sample, so any effects of finite MC data size are relatively small. Unfortunately many

Example Poisson (1 bin):

$$\frac{e^{-\sum w_i \cdot \sum w_i^k}}{k!}$$

Q: If we cannot get 10X MC, which procedures exist to handle the small MC samples?

Example Poisson (1 bin):

$$\frac{e^{-\sum w_i \cdot \sum w_i^k}}{k!}$$

Q: If we cannot get 10X MC, which procedures exist to handle the small MC samples?

A: Barlow/Beeston ('93) or Bohm/Zech ('12/'14) or Chirkin ('13) or T.G. ('18) or Argüelles et al (19')

Example Poisson (1 bin):

$$\frac{e^{-\sum w_i \cdot \sum w_i^k}}{k!}$$

Q: If we cannot get 10X MC, which procedures exist to handle the small MC samples?

A: Barlow/Beeston ('93) or Bohm/Zech ('12/'14) or Chirkin ('13) or T.G. ('18) or Argüelles et al (19')

This talk: All approaches fundamentally approximate the CPD – with pros n cons

Overview

- 1. The probability distribution for the sum of weights Compound Poisson Distribution (CPD)
- 2. Approximations of the CPD in existing approaches
 - Probabilistic approaches have interesting connections to special functions, statistics, B-Splines
- 3. Some further not-yet discussed solutions
- 4. Performance Comparisons
- 5. Summary

3 steps to understand the CPD ...

Step3 – the CPD

Step3 – the CPD

Probability distribution for the sum of weights: $p(\sum w)$

What we would like to do:

• Take PDF of the sum of weights (CPD) and integrate the Poisson mean

$$L_{bin,exact} = \int \frac{e^{-\lambda} \cdot \lambda^k}{k!} \cdot p_{CPD}(\lambda) d\lambda$$

What we would like to do:

• Take PDF of the sum of weights (CPD) and integrate the Poisson mean

$$L_{bin,exact} = \int \frac{e^{-\lambda} \cdot \lambda^k}{k!} \cdot p_{CPD}(\lambda) d\lambda$$

 However: CPD is <u>not tractable</u> (except for equal weights)

One possibility: Approximate and then integrate

Statistics of weighted MC

$$\begin{cases} Z = \sum_{i=1}^{N} W_i \\ N \sim \text{Poisson} \\ \widehat{\mu}(Z) = \sum_{i} w_i \\ \widehat{\text{var}}(Z) = \sum_{i} w_i^2 \end{cases}$$

Intead of

$$L_{bin,exact} = \int \frac{e^{-\lambda} \cdot \lambda^k}{k!} \cdot p(\lambda)_{CPD} d\lambda$$

 10^{0}

 10^{-4}

 10^{-5}

2

 $\sum_i w_i$

CPD, $\mu = 2$

10

 \mathbf{G} -approx.

Statistics of

weighted MC

encode $\widehat{\mu}(Z)$ and $\widehat{\text{var}}(Z)$

$$P(k; \Sigma w_i) = \frac{e^{-\sum w_i \cdot \sum w_i^k}}{k!} =$$

$$= \int \frac{e^{-\lambda} \cdot \lambda^k}{k!} \, \delta\left(\lambda - \sum w_i\right) d\lambda$$

$$= \int P(k; \lambda) \cdot [\delta(\lambda - w_1) * \dots * \delta(\lambda - w_n)](\lambda) \, d\lambda$$

Barlow/Beeston (1993)

$$\max_{\{\boldsymbol{\lambda}\}} \mathbf{P}(k; \sum_{j} p_{j} \widehat{w}_{j} \lambda_{j}) \cdot \prod_{j}^{N_{\text{src}}} \mathbf{P}(k_{mc,j}; \lambda_{j})$$
or

$$\max_{\{\boldsymbol{\lambda}^*\}} \mathbf{P}(k; \lambda_j^*) \cdot \prod_{j=1}^{N_{\text{src}}} \mathbf{G}(\lambda_j^*; k_{mc,j} + 1; \frac{1}{p_j \widehat{w}_j}) \cdot p_j \widehat{w}_j$$

 $N_{\rm src} = N$, absorb p_j

Chirkin (2013)

$$\max_{\{\boldsymbol{\lambda}\}} \mathbf{P}(k; \sum_{i} w_{i} \lambda_{i}) \cdot \prod_{i}^{N} \mathbf{P}(1; \lambda_{i})$$

$$\max_{\{\boldsymbol{\lambda}^*\}} \mathbf{P}(k; \sum_{i} {\lambda_i}^*) \cdot \prod_{i}^{\text{OF}} \mathbf{G}({\lambda_i}^*; 2, \frac{1}{w_i}) \cdot w_i$$

Prob. counterpart

Argüelles et al. (2019)

$$\int \mathbf{P}(k;\lambda) \cdot \mathbf{G}(\lambda;\alpha,\beta) d\lambda$$

$$\alpha = \frac{(\sum_{i} w_{i})^{2}}{\sum_{i} w_{i}^{2}} + a , \beta = \frac{\sum_{i} w_{i}}{\sum_{i} w_{i}^{2}} + b$$

Statistics of weighted MC

Pretty much indistinguishable results

Both allow for prior freedom

encode $\widehat{\mu}(Z)$ and $\widehat{\text{var}}(Z)$

Pros: - often faster

- Limit of large statistics equal to Poisson
- Interpretability
- simplicity

approximate Z, $\mathbf{G} \approx \mathbf{H}^T - \mathbf{M}^T \mathbf{C}$

encode sum of W_i

Glüsenkamp (2018)
$$\int \mathbf{P}(k;\lambda) \cdot \left[\mathbf{G}(\lambda_1; 1, \frac{1}{w_1}) * \dots * \mathbf{G}(\lambda_N; 1, \frac{1}{w_N}) \right] (\lambda) d\lambda$$

Prob. counterpart

counterpart

$$\int_{0}^{\infty} P(k;\lambda) \cdot [G(\lambda_{1};\alpha_{1},\beta_{1}) * \dots * G(\lambda_{N};\alpha_{N},\beta_{N})] (\lambda) d\lambda$$

$$\int_{0}^{\infty} P(k;\lambda) \cdot \left[G(\lambda_{1};\alpha_{1},\beta_{1}) * \dots * G(\lambda_{N};\alpha_{N},\beta_{N}) \right] (\lambda) \ d\lambda \qquad \xrightarrow{\text{Di Salvo'08}} \qquad \sim F_{L}$$

$$\int_{0}^{\infty} P(k;\lambda) \cdot \left[G(\lambda_{1};\alpha_{1},\beta_{1}) * \dots * G(\lambda_{N};\alpha_{N},\beta_{N}) \right] (\lambda) \ d\lambda \qquad \xrightarrow{\text{Di Salvo'08}} \qquad \sim F_{D}$$

 \sim Carlson R_n

$$\int_{0}^{\infty} P(k;\lambda) \cdot \left[G(\lambda_{1};\alpha_{1},\beta_{1}) * \dots * G(\lambda_{N};\alpha_{N},\beta_{N}) \right](\lambda) \ d\lambda \qquad \xrightarrow{\text{Di Salvo'08}} \qquad \sim F_{D}$$

$$Carlson '65$$

\sim Carlson R_n

Dickey '82

$$\sum_{\sum_{i} k_{i} = k, \ k_{i} \geq 0} \prod_{i} \frac{\Gamma(k_{i} + \alpha_{i})}{k_{i}! \cdot \Gamma(\alpha_{i})} \cdot \beta_{i}^{\alpha_{i}} \cdot \left(\frac{1}{1 + \beta_{i}}\right)^{k_{i} + \alpha_{i}}$$

$$\int_{0}^{\infty} P(k;\lambda) \cdot \left[G(\lambda_{1};\alpha_{1},\beta_{1}) * \dots * G(\lambda_{N};\alpha_{N},\beta_{N}) \right] (\lambda) \ d\lambda \qquad \xrightarrow{\text{Di Salvo'08}} \qquad \sim F_{D}$$

$$Carlson '63$$

\sim Carlson R_n

$$\sim \frac{1}{2\pi i} \cdot \oint_{\rho=\epsilon} \frac{1}{t^{a-c+1} \cdot \prod_{i}^{N} (t-1/z_{+1,i})^{b_{+1,i}}} dt$$

$$\sum_{\substack{\textit{Egorychev}\\\textit{Rules '80s}}} \prod_{i} \frac{\Gamma(k_i + \alpha_i)}{k_i! \cdot \Gamma(\alpha_i)} \cdot \beta_i^{\alpha_i} \cdot \left(\frac{1}{1 + \beta_i}\right)^{k_i + \alpha_i}$$

Rules '80s

$$\int_{0}^{\infty} P(k;\lambda) \cdot \left[G(\lambda_{1};\alpha_{1},\beta_{1}) * \dots * G(\lambda_{N};\alpha_{N},\beta_{N})\right](\lambda) \ d\lambda \xrightarrow{\text{Di Salvo'08}} \sim F_{D}$$

$$D_{k}(\alpha,\beta) = \frac{1}{k} \sum_{j=1}^{k} \left[\left(\sum_{i=1}^{N} \alpha_{i} \cdot \frac{1}{1+\beta_{i}}\right) D_{k-j}\right] \text{ and } D_{0} = 1$$

$$\sim \frac{1}{2\pi i} \cdot \oint_{\rho=\epsilon} \frac{1}{t^{a-c+1} \cdot \prod_{i}^{N} (t-1/z_{+1,i})^{b_{+1,i}}} dt$$

$$\sum_{Egorychev} \sum_{i=1}^{N} \frac{\Gamma(k_{i} + \alpha_{i})}{k_{i}! \cdot \Gamma(\alpha_{i})} \cdot \beta_{i}^{\alpha_{i}} \cdot \left(\frac{1}{1+\beta_{i}}\right)^{k_{i} + \alpha_{i}}$$

Egorychev Rules '80s

 $\sum_{i} \prod_{i} \frac{\Gamma(k_i + \alpha_i)}{k_i! \cdot \Gamma(\alpha_i)} \cdot \beta_i^{\alpha_i} \cdot \left(\frac{1}{1 + \beta_i}\right)^k$

31

Comparisons

1901.04645

Comparisons

Also works well with 2 sources (signal+bg)

BUT:

-Requires usage of different hyper parameters (Tuning) " \mathcal{L}_{Eff} "/" \mathcal{L}_{Mean} "

Signal+Background increase statistics simultaneously -> also not realistic

At other statistical levels $"\mathcal{L}_{Mean}"$ can be better than $"\mathcal{L}_{Eff}"$

1901.04645

We need further generalizations and more tests...

Generalization (1)
$$\int \mathbf{P}(k;\lambda) \cdot [\mathbf{GPG}_1 * \dots * \mathbf{GPG}_N] (\lambda) d\lambda$$
Generalization (2)
$$\int \mathbf{P}(k;\lambda) \cdot [\mathbf{G}_1 * \dots * \mathbf{G}_{N_{src}}] (\lambda) d\lambda$$
Generalization (3)
$$\int \mathbf{P}(k;\lambda) \cdot [\mathbf{GG}_1 * \dots * \mathbf{GG}_{N_{src}}] (\lambda) d\lambda$$

We need further generalizations and more tests...

Generalization (1)
$$\int \mathbf{P}(k;\lambda) \cdot [\mathbf{GPG}_1 * \dots * \mathbf{GPG}_N] (\lambda) d\lambda \longrightarrow \mathbf{Tries\ to}$$
Generalization (2)
$$\int \mathbf{P}(k;\lambda) \cdot [\mathbf{G}_1 * \dots * \mathbf{G}_{N_{src}}] (\lambda) d\lambda \longrightarrow \mathbf{Direct\ C}$$
Generalization (3)
$$\int \mathbf{P}(k;\lambda) \cdot [\mathbf{GG}_1 * \dots * \mathbf{GG}_{N_{src}}] (\lambda) d\lambda \longrightarrow \mathbf{Model\ i}$$

Interpretation 1: Apprixmate W i

Tries to model the CPD better (as CPGD)

Interpretation 2: Apprixmate CPDs directly

Direct Counterpart of Barlow/Beeston Model individual source datasets

$$\max_{\{\boldsymbol{\lambda}\}} \mathbf{P}(k; \sum_{j} p_{j} \widehat{w}_{j} \lambda_{j}) \cdot \prod_{j}^{N_{\text{src}}} \mathbf{P}(k_{mc,j}; \lambda_{j})$$

All of these can be exactly calculated!

First test: Equal weights

$$L_{bin,exact} = \int \frac{e^{-\lambda} \cdot \lambda^k}{k!} \cdot p_{CPD}(\lambda) d\lambda$$

$$= \int \frac{e^{-\lambda} \cdot \lambda^k}{k!} \cdot \sum_{k_{mc}=0}^{\infty} \frac{e^{-\mu} \cdot \mu^{k_{mc}}}{k_{mc}!} \cdot \delta(\lambda - k_{mc} \cdot w) d\lambda$$

$$= \sum_{k=0}^{\infty} \frac{e^{-k_{mc}w} \cdot (k_{mc}w)^k}{k!} \cdot \frac{e^{-\mu} \cdot \mu^{k_{mc}}}{k_{mc}!}$$

We can calculate the CPD exactly For equal weights, including μ

Exact CPD performs much worse than approximation

Approximation has good coverage down to << 1 MC event / bin (not seen here)

2nd Test: Increse statistics in both sig/bg

2nd Test: Increse statistics in both sig/bg

2nd Test: Increse statistics in both sig/bg

To appear

Including uncertainty about number of events greatly reduces bias

Test 3: Background statistics is limited

Test 3: Background statistics is limited

Test 3: Background statistics is limited

Generalization 3
seems to be the
Only approach
to handle the
Limited background

Summary

- All approaches approximate the CPD + integrate over Poisson mean either with nuisance optimization or via integration
- exact CPD /equal weights (scaled Poisson) behaves badly in likelihood scans ... probably because of multimodality?
- Some advantages of probabilistic approaches: Interpretability, simplicity, convergence to Poisson as $n_{MC} \to \infty$
- There is now a precise probabilistic counterpart of Barlow/Beeston

$$\max_{\{\lambda\}} \mathbf{P}(k; \sum_{j} p_{j} \widehat{w}_{j} \lambda_{j}) \cdot \prod_{j}^{N_{\mathrm{src}}} \mathbf{P}(k_{mc,j}; \lambda_{j}) \longrightarrow \int \mathbf{P}(k; \lambda) \cdot [\mathbf{G}\mathbf{G}_{1} * \dots * \mathbf{G}\mathbf{G}_{N_{src}}] (\lambda) d\lambda$$

(all of this will be on arXiv in a couple of days)

Useful links

- Barlow et al 93 https://www.sciencedirect.com/science/article/pii/001046559390005W
- Bohm/Zech 2012 https://www.sciencedirect.com/science/article/pii/S0168900212006705?via%3Dihub
- Chirkin 2013 https://arxiv.org/abs/1304.0735
- Glüsenkamp 2018 https://arxiv.org/abs/1712.01293
- Argüelles et al 2019 https://arxiv.org/abs/1901.04645

 Code for probabilistic likelihood implementations (c++/python): https://github.com/thoglu/mc_uncertainty
 (will be updated in next days with new formulas)