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Q: If we cannot get 10X MC, which procedures exist to handle the small MC samples?
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The challenge: limited MC in binned likelihoods

𝑒− σ𝑤𝑖 ∙ σ𝑤𝑖
𝑘

𝑘!

MC ≈ 10 DATA

Example Poisson (1 bin):

8

This talk: All approaches fundamentally approximate the CPD – with pros n cons

Q: If we cannot get 10X MC, which procedures exist to handle the small MC samples?
A: Barlow/Beeston (´93) or Bohm/Zech (´12/´14) or Chirkin (´13) or T.G. (´18) or Argüelles et al (19´) 



Overview

1. The probability distribution for the sum of weights
Compound Poisson Distribution (CPD) 

2. Approximations of the CPD in existing approaches
• Probabilistic approaches have interesting connections to special functions,

statistics, B-Splines

3. Some further not-yet discussed solutions

4. Performance Comparisons

5. Summary
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3 steps to understand the CPD ..
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Step1 – generation and re-weighting
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Step1:
MC
weighting



Step2: 
the
distribution
p(w)

•

12



Step3 – The CPD
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Step3 – the CPD
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Step3 – the CPD

Random variable of CPD: Z

Probability distribution for the sum of weights: 𝒑(σ𝒘)



What we would like to do:

• Take PDF of the sum of weights (CPD) and integrate the Poisson mean
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What we would like to do:

• Take PDF of the sum of weights (CPD) and integrate the Poisson mean

• However: CPD is not tractable
(except for equal weights)
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One possibility: Approximate and then integrate
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Probabilistic approaches
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Intead of
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𝑃 𝑘; Σ 𝑤𝑖 =
𝑒− σ𝑤𝑖 ∙ σ𝑤𝑖

𝑘

𝑘!
=

= න
𝑒−𝜆 ∙ 𝜆𝑘

𝑘!
𝛿 𝜆 −෍𝑤𝑖 𝑑𝜆

= න𝑃(𝑘; 𝜆) ∙ 𝛿 𝜆 − 𝑤1 ∗ ⋯∗ 𝛿 𝜆 − 𝑤𝑛 𝜆 𝑑𝜆
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„Frequentist“ „Probabilistic“
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Pros: - often faster
- Limit of large statistics

equal to Poisson
- Interpretability
- simplicity
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Pretty much indistinguishable
results

Both allow for prior freedom

Pros: - often faster
- Limit of large statistics

equal to Poisson
- Interpretability
- simplicity
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How can we calculate this integral
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𝐹𝐷

Carlson 𝑅𝑛

Dickey ´82

Carlson ´63

Di Salvo´08

Egorychev
Rules ´80s

~

~

Exact n-th B-Spline Moment
w/ arbitrary knots

Legendre Polynomials
and others ….

…

The problem of limited Monte Carlo
is connected to these other areas in 

statistics
and special functions

~
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Comparisons
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Comparisons
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1712.01293

Standard Poisson

Probabilisitic

Not a surprise: We have 1 weighted source dataset,
Barlow/Beeston averages the weights

Not a realistic situation



Comparisons

1901.04645 



Comparisons

1901.04645 

Also works well
with 2 sources (signal+bg)

BUT: 
-Requires usage of
different hyper parameters
(Tuning) 

Signal+Background increase
statistics simultaneously
-> also not realistic

At other statistical levels
"ℒ𝑀𝑒𝑎𝑛„ can be better than
"ℒ𝐸𝑓𝑓„

"ℒ𝐸𝑓𝑓"/"ℒ𝑀𝑒𝑎𝑛"
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We need further generalizations and more
tests…

To appear 
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All of these can be exactly calculated!

Direct Counterpart of Barlow/Beeston
Model individual source datasets

Tries to model the CPD better (as CPGD)

Interpretation 1: Apprixmate W_i

Interpretation 2: Apprixmate CPDs directly

We need further generalizations and more
tests…

To appear 



First test:
Equal weights

41To appear 

We can calculate the CPD exactly
For equal weights, including 𝜇
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Exact CPD performs much
worse than approximation

Approximation has good coverage
down to << 1 MC event / bin
(not seen here)



2nd Test: Increse statistics in both sig/bg
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48To appear 

1901.04645 

Including
uncertainty
about number
of events greatly
reduces bias

Similar behavior of "ℒ𝐸𝑓𝑓
(forgot Barlow here)



Test 3: Background statistics is limited
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Generalization 3 
seems to be the
Only approach
to handle the
Limited background



Summary

• All approaches approximate the CPD + integrate over Poisson mean
either with nuisance optimization or via integration

• exact CPD /equal weights (scaled Poisson) behaves badly in likelihood
scans … probably because of multimodality?

• Some advantages of probabilistic approaches:
Interpretability, simplicity, convergence to Poisson as 𝑛𝑀𝐶 → ∞

• There is now a precise probabilistic counterpart of Barlow/Beeston
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(all of this will be on arXiv in a couple of days )



Useful links

• Barlow et al 93 https://www.sciencedirect.com/science/article/pii/001046559390005W

• Bohm/Zech 2012 https://www.sciencedirect.com/science/article/pii/S0168900212006705?via%3Dihub

• Chirkin 2013 https://arxiv.org/abs/1304.0735

• Glüsenkamp 2018 https://arxiv.org/abs/1712.01293

• Argüelles et al 2019 https://arxiv.org/abs/1901.04645

• Code for probabilistic likelihood implementations (c++/python): 
https://github.com/thoglu/mc_uncertainty
(will be updated in next days with new formulas)
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