SIMULATING LIGHT IN LARGE VOLUME DETECTORS USING METROPOLIS LIGHT TRANSPORT

Gabriel Collin
MIT

IceCube

Gigaton neutrino detector located at the south pole.

IceCube

- Muon neutrinos interact with the surrounding ice/rock and produce muons that travel through the detector.
 - Produces Cherenkov light as it travels.
- Cherenkov light is scattered and absorbed
 - Effects the angular and energy resolution.

Motivation

- Currently, IceCube uses ray tracing to propagate light in the ice.
- However, most rays never reach a DOM.

- Ray tracers can be run backwards in time, but then most rays will never reach a light source.
 - Ray tracers can't constrain both the starting and ending location of the rays.
- The fundamental problem is that the interesting paths are highly constrained.
 - Is there another way to approach this?

Path integration

 The start and end locations of the ray can be constrained if the problem is specified in terms of a classical path integral.

$$\int \underbrace{e^{-S[f]}Df}_{\text{Probability of path 'f'}}$$
 Space of all paths

• Eg: $f = \{(0,0,0), (x_1,y_1,z_1), (x_2,y_2,z_2), \dots, (0,0,120)\}$

$$(0,0,0)$$
 (x_2,y_2,z_2) (x_3,y_3,z_3) $(0,0,120)$

Evaluation of the integral

 Information can be extracted about the light propagation by framing the integrand as a probability distribution:

$$e^{-S[f]} \to p[f] = p(x_1, y_1, z_1, x_2, y_2, z_2, \dots)$$

- This distribution can be sampled with an MCMC.
- More details on the construction of p[f] in the paper:

arXiv.org > hep-ex > arXiv:1811.04156

High Energy Physics - Experiment

Using path integrals for the propagation of light in a scattering dominated medium

Gabriel H. Collin

Industry use

- This idea inspired by a CGI rendering technique called Metropolis light transport.
 - Computer animation often runs into a similar problem to us, where only a small fraction of light paths are detectable.
 - Canonical example is a light source in another room that shines through a door that is only slightly cracked open.

Left: Rendering algorithm similar to Metropolis light transport.
Right: Standard path tracing algorithm.

- CGI industry mainly renders scenes that are dominated by reflections.
 - In IceCube, light transport is entirely scattering.

Reversible jump MCMC

- The number of places where light scatters is not fixed.
 - Thus the dimensionality of the probability distribution is variable.

 Reversible Jump Markov Chain Monte Carlo can change the number of dimensions in a probability distribution.

Reversible jump MCMC

The acceptance probability is based on the following ratio:

Padded probability distribution

q can be marginalised out later for free.

Reversible jump for light propagation

- A path with N vertices exists in \mathbb{R}^{3N}
 - We wish to propose a new path with N+1 vertices.
 - Requires a q with 3 parameters, and a choice of g.
- g selects a pair of vertices.

- Then inserts a new vertex between them.
 - Position of new vertex based on three random values from q

Path length distribution

- From the samples created by the MCMC, the probability distribution for path length can be easily extracted.
 - IceCube measures photon arrival time, which is directly related to path length.
 - P(L < X) = fraction of samples where the length of the path is less than X.
- To validate the method, the length distribution produced by the path sampler can be compared to one created using a ray tracer.
- An MCMC usually requires a burn-in period, however this can be partially avoided by seeding the MCMC with the ray-tracer.

Synthetic test case

One light source, with two detectors

Path length distribution

- Solid: path sampler. Dashed: reference ray tracer
 - Ray tracer was run until 5000 samples collected.
 - Path sampler was run until results matched the path sampler.

Detector A

Acceptance rate ~20%

Lines offset for readability

Performance

 Ray tracer is also CPU based to allow a performance comparison.

b	Ray tracer	Path sampler
0.1 m ⁻¹	~46000 s	~23 s
0.2 m ⁻¹	~78000 s	~74 s
0.3 m ⁻¹	~99000 s	~232 s
0.4 m ⁻¹	~122000 s	~373 s
0.5 m ⁻¹	~156000 s	~416 s

- Performance improvement of 300 to 1000 times faster.
 - The b = 0.3 to 0.5 m⁻¹ cases are probably most comparable to conditions in IceCube.

Other applications

 This approach to simulation is useful when initial and final states are highly constrained.

- Litmus test:
 - Are you throwing out the vast majority of your events (99.9%+) due to them not meeting one of these constraints?
- Constraints do not have to just be in position.
 - Eg: initial and final angle for light passing through a planetary atmosphere.

Other applications

- Path does not just have to describe light.
 - Eg: Simulation of transport of neutrons.
- Constraints could be discrete parameters.
 - Eg: Simulation of atmospheric showers.
 - Initial condition: particle must be a nucleus.
 - Final condition: shower products must reach underground detector.
- May also be possible to incorporate selection cuts into the constraint.

Conclusion

- Simulation of light can be posed as a path integral from which samples can be drawn.
- Reproduces the timing distribution of light incident on a detector.
 - Up to 1000x faster than a ray tracer in synthetic test case.
- Method is generally applicable to a wide range of problems.
 - When initial and final states are highly constrained.

BACKUP

- The probability distribution has three main parts:
 - A factor for the initial direction (probability of emission).
 - A factor for each segment in the path (except the last).
 - A factor for the last segment, including the probability of detection.

- The first factor:
 - Determined by the light source.
 - Here the light source is assumed to be a point.
 - Can be extended to line or spherical sources.
 - Here, probability distribution chosen to be a von Mises-Fisher distribution:

$$\varepsilon(\hat{r}_0) = \frac{\kappa e^{-\kappa \hat{r}_0 \cdot \hat{\varepsilon}}}{4\pi \sinh \kappa}$$

- The second factor:
 - Repeated for each segment (except the last).
 - Is the probability of:
 - Light scattering at x_i after traveling along the line segment, and
 - Light changing direction according to the next segment.

$$p_i = b(x_i)e^{-\tau_i}\sigma(\cos\Delta\theta_i)$$

Exponential distribution for scattering

Angular scattering distribution

Optical depth:
$$au_i = \int \left[a(x(s)) + b(x(s)) \right] ds$$

- The third factor:
 - Is the probability of:
 - Light traveling along the last segment without scattering, and
 - The detection efficiency where the light ends on the sphere.

$$p_f = e^{-\tau_f} \rho(x_f) (\hat{x}_f \cdot \hat{n})$$

Exponential CDF for the survival of light

Detection efficiency

2D constraint term

The constraint that the final vertex of the path must lie on a 2D spherical surface introduces an extra factor of cos(θ).

The total probability is the product of these factors:

$$p = \epsilon(\hat{r}_1) \left[\prod_{i=1}^{n-1} p_i \right] p_f$$

Choice of coordinates

- The method of proposing new coordinates has a large impact on the efficiency of the sampler.
- As the angular probability distribution for scattering in ice is very forward focused, the coordinates are highly correlated with each other.
- In addition, the length scales of the probability distribution is a function of the distance between vertices.
 - A simple normal distribution based proposal function results in very poor performance.
- One solution is to de-correlate through a good choice of coordinates.

System is defined in a nested form like a tree.

System is defined in a nested form like a tree.

System is defined in a nested form like a tree.

- Specified in terms of only dimensionless quantities, this system has a natural length scale independence.
- Also has a nice side-effect of correlated movements in the vertices.

 Sampling happens in this coordinate space, so an appropriate Jacobian factor is also needed.

Path length distribution

Acceptance rate ~ 20%

Ray tracing

- IceCube uses ray tracing to simulate light.
 - Equivalent to solving the equations of motion for photons.
- Light ray is propagated a random distance
- Direction is changed by a random amount according to the angular scattering distribution: $p(\cos \theta)$
- Ray thrown out (or re-weighted) according to the absorption probability: e^{-a x}

Length of propagation drawn from
$$p(x) = be^{-bx}$$

 IceCube generates millions of rays for each one that finds its way to a DOM.