Efficient Neutrino Oscillation Parameter Inference with Gaussian Process

Lingge Li, Nitish Nayak, Jianming Bian, Pierre Baldi

UC-Irvine

PhystatNu - 2019

Neutrino Oscillations

- ▶ Neutrinos : 2 kinds of states, each of which come in 3 types
 - ▶ Interacting, i.e what we observe \rightarrow flavor states $(\nu_e, \, \nu_\mu, \, \nu_ au)$
 - ▶ Propagating, i.e in between observations \rightarrow mass eigenstates (ν_1 , ν_2 , ν_3)
- ▶ Principle of superposition connects them via 3×3 unitary matrix (U_{PMNS}), i.e.

$$\begin{bmatrix} \nu_{\rm e} \\ \nu_{\mu} \\ \nu_{\tau} \end{bmatrix} = U_{\rm PMNS} \begin{bmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{bmatrix}$$

- ▶ Via QM, neutrinos starting out as one flavor can be observed as another ("Oscillations").
- ▶ Well defined probability which depends on :
 - Energy of neutrino, E_{ν} and length of propagation, L
 - mass-squared splittings, Δm_{32}^2 , Δm_{21}^2 , i.e $\Delta m_{ii}^2 = m_i^2 m_i^2$
 - ► U_{PMNS}
- ▶ For neutrino propagation in vacuum, the oscillation probability in all its glory:

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \delta_{\alpha\beta} - 4\sum_{i>i}^{3}\Re(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta i}^{*})\sin^{2}(\frac{\Delta m_{ij}^{2}L}{4E_{\nu}}) + 2\sum_{i>i}^{3}\Im(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta i}^{*})\sin(\frac{\Delta m_{ij}^{2}L}{4E_{\nu}})$$

Neutrino Oscillations Contd..

▶ *U_{PMNS}* commonly parameterized as

$$U_{PMNS} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & cos\theta_{23} & sin\theta_{23} \\ 0 & -sin\theta_{23} & cos\theta_{23} \end{bmatrix} \begin{bmatrix} cos\theta_{13} & 0 & sin\theta_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -sin\theta_{13}e^{i\delta_{CP}} & 0 & cos\theta_{13} \end{bmatrix} \begin{bmatrix} cos\theta_{12} & sin\theta_{12} & 0 \\ -sin\theta_{12} & cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- Physics program entails measuring $P(
 u_lpha o
 u_eta)$ to infer U_{PMNS} and Δm_{ii}^2 parameters
- **b** Broadly, solar experiments give handle on (21) parameters, reactor experiments for θ_{13}
- ▶ Long baseline (LBL) experiments (this talk) gives handle on (32).
 - $P(\nu_{\mu} \rightarrow \nu_{\mu})$ sensitive to $sin^2(2\theta_{23})$ and $|\Delta m^2_{32}|$
 - Non-zero θ_{13} opens up $P(\nu_{\mu} \to \nu_{e})$ channel, sensitive to δ_{CP} , θ_{23} octant and $sgn(\Delta m_{32}^{2})$

Physics Implications

In the LBL context, we want to know if:

- $ightharpoonup \Delta m_{32}^2 > 0$ or < 0? (Normal or Inverted)
 - Identifying mass hierarchy (NH or IH) has implications for neutrino mass measurements
- ▶ Octant of θ_{23} or $\theta_{23} = 45^{\circ}$?
- ▶ $sin\delta_{CP} \neq 0$?
 - Lepton sector CP-violation. Gives us a clue towards explaining matter-antimatter asymmetry

Statistical Issues

- Oscillation Parameters are typically measured via MLE using the underlying PMNS model and comparing it to observation
- ▶ However, experiments collect only a handful of statistics. $\mathcal{O}(10-100)$ over years of operation for the $\nu_{\mu} \rightarrow \nu_{e}$ channel
- Oscillation probabilities have complicated dependence on multiple parameters difficult to delineate
- Confidence Intervals are hard to find as Likelihood ratios don't satisfy asymptotic properties.
- Let's illustrate this with a toy experiment..

Toy Experiment

- ▶ Modelled on NOvA. Baseline, $L=810 \mathrm{km}$ with ν_{μ} flux peaking at 2GeV
- ho $u_{\mu}
 ightarrow
 u_{e}$ by multiplying toy shapes for flux, cross-section and oscillation probability.
- ▶ 10% normalisation errors on flux and xsec model

- $ightharpoonup P(
 u_{\mu}
 ightarrow
 u_{e})$ using 3-flavor PMNS with MSW corrections added for matter propagation.
- ▶ Similar setup for $\nu_{\mu} \rightarrow \nu_{\mu}$ to constrain $sin^2(2\theta_{23})$ and $|\Delta m_{32}^2|$ but with 2-flavor approximation
- ho $P(
 u_{\mu}
 ightarrow
 u_{\mu}) \sim 1 sin^2(2 heta_{23})sin^2(\Delta m_{32}^2L/4E)$

Toy Experiment

- ▶ Toy data (\vec{x}) from Poisson variations at some chosen oscillation parameters.
- \blacktriangleright With (θ, δ) denoting list of oscillation and nuisance (flux and xsec errors) parameters,
- ▶ Best-fit $(\hat{\theta}, \hat{\delta})$ found by minimizing negative log-likelihood over energy bins, i

$$-2\log L(\theta,\delta) = -2\sum_{i\in I}\log Pois(x_i; v(\theta,\delta)_i) - \sum_{i\in I}x_i + \sum_{i\in I}v(\theta,\delta)_i + \delta^2$$

PhystatNu - 2019

6 / 32

Confidence Intervals

- lacktriangledown eta_0 included in the $1-\alpha$ confidence contour if we fail to reject the null $(\theta=\theta_0)$ at α level
- Use an Inverted Likelihood Ratio Test (LRT)
- ▶ Neyman-Pearson Lemma : Likelihood Ratio (LR) is the most powerful test statistic

Table 38.2: Values of $\Delta\chi^2$ or $2\Delta \ln L$ corresponding to a coverage probability $1-\alpha$ in the large data sample limit, for joint estimation of m parameters.

$(1 - \alpha)$ (%)	m = 1	m = 2	m = 3
68.27	1.00	2.30	3.53
90.	2.71	4.61	6.25
95.	3.84	5.99	7.82
95.45	4.00	6.18	8.03
99.	6.63	9.21	11.34
99.73	9.00	11.83	14.16

From the PDG Review on Statistics

- Easy to estimate in the asymptotic case as LR is a χ^2 distribution. (Wilks Theorem)
- ► However, that's not the case here!
- Proceed via Unified approach (Feldman-Cousins, 1998)

Feldman-Cousins

- ▶ Seminal result giving an ordering principle for confidence intervals in non-asymptotic cases
- ▶ For given θ_0 , explicitly simulate distribution of test statistic, LR via Monte-Carlo experiments at θ_0

- ▶ 68% confidence interval for δ_{CP} : All δ_{CP} values for which LR for observed data (critical value) lies within threshold
- ► Confidence of rejecting given $\delta_{CP} = \delta_0$ given by percentile of $crit(\delta_0)$
- Gives us the "correct" confidence interval in the frequentist sense by construction, since its essentially a grid search over the entire parameter space.

A more efficient FC

- Grid search across multi-dimensional parameter space

 extremely intense computational demands
- ▶ It'd be nice to be able to come up with a more refined search algorithm.

▶ We can expect intuitively :

- Given a point in parameter space that is rejected at high confidence, it is likely that points near it will also be rejected
- Further, the variation in the LR percentiles ought to be smooth.
- ► An efficient search would therefore :
 - Learn local features in the LR percentile surface to guide the search
 - Favor simulating the LR test statistic distribution near the edge of the desired confidence contour than further out.

Bayesian Supervised Learning

Our goal is to approximate the FC percentile surface non parametrically using only a fraction of the grid points.

- $lackbox{ Classical supervised learning}
 ightarrow {
 m training data to get best-fit model}.$
- ▶ Predictions for new data are best-guess

- A Bayesian approach can assume a model itself to be a random variable with a certain probability distribution.
- Training data updates your priors about the model distribution
- Predictions for new data is a posterior distribution in model space.
- Quantifies uncertainty in model estimates. Gets smaller with more training data
- ► Can be pretty non-parametric

Gaussian Process

- Special case of Bayesian Learning. Model distribution is an extension of multivariate gaussians to function space.
- ► Technically, its a probability measure defined over ∞ -dim function space parameterized only by a mean function, $\mu(x)$ and a covariance function (kernel), k(x, x')
- ▶ We say, $f \sim \mathcal{GP}(\mu, k(\cdot, \cdot))$ if

$$\begin{pmatrix} f(x) \\ f(x') \end{pmatrix} \sim \mathcal{N}(\begin{bmatrix} \mu(x) \\ \mu(x') \end{bmatrix}, \begin{bmatrix} k(x,x) & k(x,x') \\ k(x,x') & k(x',x') \end{bmatrix}).$$

- ▶ Intuitively, we can picture each draw from a $\mathcal{GP}(\mu, k(\cdot, \cdot))$ giving us a different f(x) with the average result being $\mu(x)$
- ► The kernel encodes the correlation between nearby points. A commonly used kernel is the radial basis function, $k(x, x') = \exp(-(x x')^2/l^2)$
- ▶ A RBF kernel tells us that \mathcal{GP} results at nearby points are highly influenced by observations at a given point while further out, they aren't.

Why $\mathcal{GP}s$?

- Enormously flexible! Can basically approximate any well behaved function with an appropriate choice of the kernel.
- ▶ Predictions at new data points are computationally tractable with basic linear algebra, i.e for $\mathcal{GP}(\mathbf{0}, k(\cdot, \cdot))$:

$$f(x')|f(x) \sim \mathcal{N}(\frac{k(x,x')}{k(x,x)}f(x), k(x',x') - \frac{k(x,x')^2}{k(x,x)})$$

Kernel hyperparameters can be learned via maximising the likelihood of current set of observations marginalised over the function distribution, f

$\mathcal{GP}s$ in Literature

- ▶ \mathcal{GP} s in HEP : arXiv:1709.05681, M. Frate, K. Cranmer et al. Using \mathcal{GP} s to describe background spectra in dijet resonance searches at the LHC non-parametrically.
- ▶ Used in Astrophysics for modelling stochasticity of light yields in stars, active galactic nuclei etc
- ► Many other fields!

$\mathcal{GP}s$ for FC

- ▶ Fitting a GP to target percentile surface for a given contour. (Stochasticity of the target surface)
- ▶ "Observation" at a given point in parameter space, θ means simulating the LRT distribution and finding the percentile of $crit(\theta)$
- ightharpoonup Choose a RBF Kernel with an additional term incorporating variance of percentile estimate at heta.

$$k(\cdot,\cdot) = k_{RBF}(\cdot,\cdot) + \sigma_p^2 I$$

- The additional variance encodes the binomial error resulting from throwing finite number of experiments to simulate the LRT distribution at θ
- Allows us to incorporate varying number of experiments thrown into the CI search, reducing computational burden further.

Optimised Confidence Interval Search

• Use an acquisition function that proposes new points in θ -space to explore based on \mathcal{GP} approximated percentile surface.

$$extstyle{a}(heta) = \sum_{lpha_i} |rac{\hat{q}(heta) - lpha_i}{\sigma_{\hat{q}(heta)}}|^{-1}$$

- ▶ Here, $\hat{q}(\theta)$ is \mathcal{GP} mean, $\sigma_{\hat{q}(\theta)}$ is \mathcal{GP} std-dev, α_i is chosen to be (0.68, 0.90)
- lacksquare a(heta) balances between exploration, i.e MC experiments at new points and exploitation, i.e reducing \mathcal{GP} error

15 / 32

Optimised Confidence Interval Search

• Use an acquisition function that proposes new points in θ -space to explore based on \mathcal{GP} approximated percentile surface.

$$extstyle{a}(heta) = \sum_{lpha_i} |rac{\hat{q}(heta) - lpha_i}{\sigma_{\hat{q}(heta)}}|^{-1}$$

- ▶ Here, $\hat{q}(\theta)$ is \mathcal{GP} mean, $\sigma_{\hat{q}(\theta)}$ is \mathcal{GP} std-dev, α_i is chosen to be (0.68, 0.90)
- lacksquare a(heta) balances between exploration, i.e MC experiments at new points and exploitation, i.e reducing \mathcal{GP} error

16 / 32

- ▶ "Real" data similar to latest best-fit estimate from NOvA. ($sin^2\theta_{23}=0.56$, $\Delta m_{32}^2=2.44\times 10^{-3} \text{eV}^2$, $\delta_{CP}=1.5\pi$)
- $ightharpoonup sin^2 \theta_{23} \delta_{CP}$ 68% and 90% CI for IH after 5 iterations

- Grayscale denotes number of experiments thrown in relation to FC (2000)
- ▶ Algorithm does a good job of finding the FC contour edge!

- ▶ "Real" data similar to latest best-fit estimate from NOvA. ($sin^2\theta_{23}=0.56$, $\Delta m_{32}^2=2.44\times 10^{-3} \text{eV}^2$, $\delta_{CP}=1.5\pi$)
- $sin^2\theta_{23} \delta_{CP}$ 68% and 90% CI for NH after 5 iterations

- ▶ "Real" data similar to latest best-fit estimate from NOvA. ($sin^2\theta_{23}=0.56$, $\Delta m_{32}^2=2.44\times 10^{-3} {\rm eV}^2$, $\delta_{CP}=1.5\pi$)
- ▶ Significance of rejecting δ_{CP} only after 5 iterations. (Percentile converted to Z-score significance)

- ▶ 200 different runs for "real" data at the same point as before.
- ▶ Use classification accuracy of all grid points, taking FC result as truth, to evaluate performance.
- ightharpoonup Progress shows the search algorithm converges to the FC value \sim 10× faster for 2D case and \sim 5× for 1D case

- ▶ Median Accuracies for 1D is 100%, for 2D is > 99.5% (both NH, IH)
- ▶ Mean Accuracies for 1D is 98.5% (99.8%) for NH (IH), for 2D is > 99% (both NH, IH)

Summary and Conclusions

- Neutrino oscillation experiments provide interesting test case for estimating frequentist confidence intervals
- ▶ LBL experiments typically proceed via Feldman-Cousins
- However, simulating LRT distributions across multi-dimensional parameter space requires huge computational resources
- We've studied a Bayesian approach using Gaussian processes on a toy LBL set-up
- Helps us estimate frequentist contour edges to quite a high accuracy without having to sample the entire parameter space!
- Order of magnitude gain in computation!
- ► All code with illustrative notebooks here: https://github.com/nitish-nayak/ToyNuOscCI, maintained by Lingge (linggeli7@gmail.com) and myself (nayakb@uci.edu)

Backup

\mathcal{GP} Technical Details

- Rasmussen and Williams has a good discussion about convergence to true functions in regression settings (typically using squared loss functions): http://www.gaussianprocess.org/gpml/chapters/RW7.pdf
- ▶ Well behaved ⇒ expressible as a generalised fourier series of kernel eigenfunctions
- ▶ If kernel is non-degenerate, approximation is guaranteed to converge to true function
- If degenerate, convergence towards an L_2 approximation of the true function
- Rates of convergence typically depends on mean and kernel smoothness as well as smoothness of the true function

\mathcal{GP} Fitting

▶ Hyperparameters (w) learned via maximising log marginal likelihood :

$$p(\mathbf{y}|\mathbf{X},\mathbf{w}) = \int p(\mathbf{y}|\mathbf{X},\mathbf{w},\mathbf{f})p(\mathbf{f}|\mathbf{X},\mathbf{w})d\mathbf{f}$$

Clearly,

$$\textbf{f}|\textbf{X},\textbf{w} \sim \mathcal{N}(\textbf{0},\mathcal{K}(\textbf{X},\textbf{w}))$$

► Some algebra gives us :

$$-2\log p(\mathbf{y}|\mathbf{X},\mathbf{w}) = \mathbf{y}^T K^{-1} \mathbf{y} + \log |K| + n \log 2\pi$$

- Minimising above equation gives us a good choice for w
- ► log |K| acts as a penalty term for complexity and therefore reduces overfitting to data

\mathcal{GP} for FC

- "Gaussian" not a statement of the underlying distribution of the test statistic, which can still be heavily non-Gaussian
- Rather, "Gaussianity" for a stochastic process generating the test statistic distributions.
 Stochasticity mostly from finite FC grid resolution or finite number of MC experiments for simulating the test statistic distribution
- ► Assumption we're making for this stochasticity is that it can be parameterised by a kernel describing the relationship between the distributions at neighbouring points ⇒ multi-variate gaussian
- Also important to note, no real statement about FC coverage or handling of nuisance parameters.
 Assumes FC gives desired level of coverage
- ► Confidence Intervals still with frequentist interpretation
- Bayesian interpretation for "classification probability" of points in parameter space for desired confidence regions
- ► A good summary would be "Accelerating Frequentist CI search by estimating CI edges through Bayesian ML"

Algorithm 1 \mathcal{GP} iterative confidence contour finding

```
for each iteration t = 1, 2, ... do
    Propose new points in parameter space \arg \max_{\theta} a(\theta)
    for each point \theta' do
        Simulate likelihood ratio distribution
        for k = 1, 2, ... do
            Perform a pseudo experiment
            Maximize the likelihood with respect to (\theta, \delta)
            Maximize the likelihood with constraint \theta = \theta'
        end for
        Obtain critical value c(\theta')
    end for
    Update \mathcal{GP} approximation \hat{c}(\theta)
    Update confidence contours
end for
```

Results : NH, $\sin^2\theta_{23} - \delta_{CP}$

NH, $\sin^2\theta_{23} - \Delta m_{32}^2$

