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Neutrino Oscillations

I Neutrinos : 2 kinds of states, each of which come in 3 types
I Interacting, i.e what we observe → flavor states (νe , νµ, ντ )
I Propagating, i.e in between observations → mass eigenstates (ν1, ν2, ν3)

I Principle of superposition connects them via 3× 3 unitary matrix (UPMNS), i.e.νeνµ
ντ

 = UPMNS

ν1

ν2

ν3


I Via QM, neutrinos starting out as one flavor can be observed as another (”Oscillations”).
I Well defined probability which depends on :

I Energy of neutrino, Eν and length of propagation, L
I mass-squared splittings, ∆m2

32, ∆m2
21, i.e ∆m2

ij = m2
i −m2

j
I UPMNS

I For neutrino propagation in vacuum, the oscillation probability in all its glory:

P(να → νβ) = δαβ − 4
3∑

i>j

<(U∗αiUβiUαjU
∗
βi ) sin2(

∆m2
ijL

4Eν
) + 2

3∑
i>j

=(U∗αiUβiUαjU
∗
βi ) sin(

∆m2
ijL

4Eν
)
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Neutrino Oscillations Contd..

I UPMNS commonly parameterized as

UPMNS =

1 0 0
0 cosθ23 sinθ23

0 −sinθ23 cosθ23

 cosθ13 0 sinθ13e
−iδCP

0 1 0
−sinθ13e

iδCP 0 cosθ13

 cosθ12 sinθ12 0
−sinθ12 cosθ12 0

0 0 1


I Physics program entails measuring P(να → νβ) to infer UPMNS and ∆m2

ij parameters

I Broadly, solar experiments give handle on (21) parameters, reactor experiments for θ13

I Long baseline (LBL) experiments (this talk) gives handle on (32).
I P(νµ → νµ) sensitive to sin2(2θ23) and |∆m2

32|
I Non-zero θ13 opens up P(νµ → νe) channel, sensitive to δCP , θ23 octant and sgn(∆m2

32)
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Physics Implications

In the LBL context, we want to know if :

I ∆m2
32 > 0 or < 0? (Normal or Inverted)

I Identifying mass hierarchy (NH or IH) has
implications for neutrino mass measurements

I Octant of θ23 or θ23 = 45◦?

I sinδCP 6= 0?
I Lepton sector CP-violation. Gives us a clue

towards explaining matter-antimatter
asymmetry
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Statistical Issues

I Oscillation Parameters are typically measured
via MLE using the underlying PMNS model
and comparing it to observation

I However, experiments collect only a handful of
statistics. O(10− 100) over years of operation
for the νµ → νe channel

I Oscillation probabilities have complicated
dependence on multiple parameters =⇒
difficult to delineate

I Confidence Intervals are hard to find as
Likelihood ratios don’t satisfy asymptotic
properties.

I Let’s illustrate this with a toy experiment..
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Toy Experiment

I Modelled on NOvA. Baseline, L = 810km with νµ flux peaking at 2GeV

I νµ → νe by multiplying toy shapes for flux, cross-section and oscillation probability.

I 10% normalisation errors on flux and xsec model
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I P(νµ → νe) using 3-flavor PMNS with MSW corrections added for matter propagation.

I Similar setup for νµ → νµ to constrain sin2(2θ23) and |∆m2
32| but with 2-flavor approximation

I P(νµ → νµ) ∼ 1− sin2(2θ23)sin2(∆m2
32L/4E)
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Toy Experiment
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I Toy data (~x) from Poisson variations at some chosen oscillation parameters.

I With (θ, δ) denoting list of oscillation and nuisance (flux and xsec errors) parameters,

I Best-fit (θ̂, δ̂) found by minimizing negative log-likelihood over energy bins, i

−2 log L(θ, δ) = −2
∑
i∈I

logPois(xi ; v(θ, δ)i )−
∑
i∈I

xi +
∑
i∈I

v(θ, δ)i + δ2
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Confidence Intervals

I θ0 included in the 1− α confidence contour if we fail to reject the null (θ = θ0) at α level

I Use an Inverted Likelihood Ratio Test (LRT)

I Neyman-Pearson Lemma : Likelihood Ratio (LR) is the most powerful test statistic

From the PDG Review on Statistics

I Easy to estimate in the asymptotic case as LR is a
χ2 distribution. (Wilks Theorem)

I However, that’s not the case here!

I Proceed via Unified approach (Feldman-Cousins,
1998)
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Feldman-Cousins

I Seminal result giving an ordering principle for confidence intervals in non-asymptotic cases

I For given θ0, explicitly simulate distribution of test statistic, LR via Monte-Carlo experiments at θ0
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I 68% confidence interval for δCP : All δCP
values for which LR for observed data (critical
value) lies within threshold

I Confidence of rejecting given δCP = δ0 given
by percentile of crit(δ0)

I Gives us the ”correct” confidence interval in
the frequentist sense by construction, since its
essentially a grid search over the entire
parameter space.
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A more efficient FC

I Grid search across multi-dimensional parameter space =⇒ extremely intense computational
demands

I It’d be nice to be able to come up with a more refined search algorithm.

I We can expect intuitively :
I Given a point in parameter space that is rejected

at high confidence, it is likely that points near it
will also be rejected

I Further, the variation in the LR percentiles ought
to be smooth.

I An efficient search would therefore :
I Learn local features in the LR percentile surface to

guide the search

I Favor simulating the LR test statistic distribution
near the edge of the desired confidence contour
than further out.
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Bayesian Supervised Learning

I Our goal is to approximate the FC percentile surface non parametrically using only a fraction of
the grid points.

I Classical supervised learning → training data to get
best-fit model.

I Predictions for new data are best-guess

I A Bayesian approach can assume a model itself to
be a random variable with a certain probability
distribution.

I Training data updates your priors about the model
distribution

I Predictions for new data is a posterior distribution
in model space.

I Quantifies uncertainty in model estimates. Gets
smaller with more training data

I Can be pretty non-parametric
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Gaussian Process

I Special case of Bayesian Learning. Model distribution is an extension of multivariate gaussians to
function space.

I Technically, its a probability measure defined over ∞-dim function space parameterized only by a
mean function, µ(x) and a covariance function (kernel), k(x , x ′)

I We say, f ∼ GP(µ, k(·, ·)) if(
f (x)
f (x ′)

)
∼ N (

[
µ(x)
µ(x ′)

]
,

[
k(x , x) k(x , x ′)
k(x , x ′) k(x ′, x ′)

]
).

I Intuitively, we can picture each draw from a GP(µ, k(·, ·)) giving us a different f (x) with the
average result being µ(x)

I The kernel encodes the correlation between nearby points. A commonly used kernel is the radial
basis function, k(x , x ′) = exp(−(x − x ′)2/l2)

I A RBF kernel tells us that GP results at nearby points are highly influenced by observations at a
given point while further out, they aren’t.

PhystatNu - 2019 11 / 32 Lingge Li, Nitish Nayak, Jianming Bian, Pierre Baldi



Why GPs?

I Enormously flexible! Can basically approximate any
well behaved function with an appropriate choice of
the kernel.

I Predictions at new data points are computationally
tractable with basic linear algebra, i.e for
GP(0, k(·, ·)) :

f (x ′)|f (x) ∼ N (
k(x , x ′)

k(x , x)
f (x), k(x ′, x ′)− k(x , x ′)2

k(x , x)
)
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I Kernel hyperparameters can be learned via maximising the likelihood of current set of observations
marginalised over the function distribution, f
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GPs in Literature

I GPs in HEP : arXiv:1709.05681, M. Frate, K. Cranmer et al. Using GPs to describe background
spectra in dijet resonance searches at the LHC non-parametrically.

I Used in Astrophysics for modelling stochasticity of light yields in stars, active galactic nuclei etc

I Many other fields!
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GPs for FC

I Fitting a GP to target percentile surface for a given contour. (Stochasticity of the target surface)

I ”Observation” at a given point in parameter space, θ means simulating the LRT distribution and
finding the percentile of crit(θ)

I Choose a RBF Kernel with an additional term incorporating variance of percentile estimate at θ.

I k(·, ·) = kRBF (·, ·) + σ2
pI

I The additional variance encodes the binomial error
resulting from throwing finite number of
experiments to simulate the LRT distribution at θ

I Allows us to incorporate varying number of
experiments thrown into the CI search, reducing
computational burden further.
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Optimised Confidence Interval Search

I Use an acquisition function that proposes new points in θ-space to explore based on GP
approximated percentile surface.

a(θ) =
∑
αi

| q̂(θ)− αi

σq̂(θ)
|−1

I Here, q̂(θ) is GP mean, σq̂(θ) is GP std-dev, αi is chosen to be (0.68, 0.90)
I a(θ) balances between exploration, i.e MC experiments at new points and exploitation, i.e

reducing GP error
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Optimised Confidence Interval Search

I Use an acquisition function that proposes new points in θ-space to explore based on GP
approximated percentile surface.

a(θ) =
∑
αi

| q̂(θ)− αi

σq̂(θ)
|−1

I Here, q̂(θ) is GP mean, σq̂(θ) is GP std-dev, αi is chosen to be (0.68, 0.90)
I a(θ) balances between exploration, i.e MC experiments at new points and exploitation, i.e

reducing GP error
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Results

I ”Real” data similar to latest best-fit estimate from NOvA. (sin2θ23 = 0.56,
∆m2

32 = 2.44× 10−3eV 2, δCP = 1.5π)

I sin2θ23 − δCP 68% and 90% CI for IH after 5 iterations

I Grayscale denotes number of experiments thrown in relation to FC (2000)

I Algorithm does a good job of finding the FC contour edge!
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Results

I ”Real” data similar to latest best-fit estimate from NOvA. (sin2θ23 = 0.56,
∆m2

32 = 2.44× 10−3eV 2, δCP = 1.5π)

I sin2θ23 − δCP 68% and 90% CI for NH after 5 iterations
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Results

I ”Real” data similar to latest best-fit estimate from NOvA. (sin2θ23 = 0.56,
∆m2

32 = 2.44× 10−3eV 2, δCP = 1.5π)

I Significance of rejecting δCP only after 5 iterations. (Percentile converted to Z-score significance)
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Results

I 200 different runs for ”real” data at the same point as before.

I Use classification accuracy of all grid points, taking FC result as truth, to evaluate performance.

I Progress shows the search algorithm converges to the FC value ∼ 10× faster for 2D case and
∼ 5× for 1D case

I Median Accuracies for 1D is 100%, for 2D is > 99.5% (both NH, IH)

I Mean Accuracies for 1D is 98.5% (99.8%) for NH (IH), for 2D is > 99% (both NH, IH)
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Summary and Conclusions

I Neutrino oscillation experiments provide interesting test case for estimating frequentist confidence
intervals

I LBL experiments typically proceed via Feldman-Cousins

I However, simulating LRT distributions across multi-dimensional parameter space requires huge
computational resources

I We’ve studied a Bayesian approach using Gaussian processes on a toy LBL set-up

I Helps us estimate frequentist contour edges to quite a high accuracy without having to sample the
entire parameter space!

I Order of magnitude gain in computation!

I All code with illustrative notebooks here : https://github.com/nitish-nayak/ToyNuOscCI,
maintained by Lingge (linggeli7@gmail.com) and myself (nayakb@uci.edu)
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GP Technical Details

I Rasmussen and Williams has a good discussion about convergence to true functions in regression
settings (typically using squared loss functions) :
http://www.gaussianprocess.org/gpml/chapters/RW7.pdf

I Well behaved =⇒ expressible as a generalised fourier series of kernel eigenfunctions

I If kernel is non-degenerate, approximation is guaranteed to converge to true function

I If degenerate, convergence towards an L2 approximation of the true function

I Rates of convergence typically depends on mean and kernel smoothness as well as smoothness of
the true function
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GP Fitting

I Hyperparameters (w) learned via maximising log marginal likelihood :

p(y|X,w) =

∫
p(y|X,w, f)p(f|X,w)df

I Clearly,
f|X,w ∼ N (0,K(X,w))

I Some algebra gives us :

−2 log p(y|X,w) = yTK−1y + log |K |+ n log 2π

I Minimising above equation gives us a good choice for w

I log |K | acts as a penalty term for complexity and therefore reduces overfitting to data
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GP for FC

I ”Gaussian” not a statement of the underlying distribution of the test statistic, which can still be
heavily non-Gaussian

I Rather, ”Gaussianity” for a stochastic process generating the test statistic distributions.
Stochasticity mostly from finite FC grid resolution or finite number of MC experiments for
simulating the test statistic distribution

I Assumption we’re making for this stochasticity is that it can be parameterised by a kernel
describing the relationship between the distributions at neighbouring points =⇒ multi-variate
gaussian

I Also important to note, no real statement about FC coverage or handling of nuisance parameters.
Assumes FC gives desired level of coverage

I Confidence Intervals still with frequentist interpretation

I Bayesian interpretation for ”classification probability” of points in parameter space for desired
confidence regions

I A good summary would be ”Accelerating Frequentist CI search by estimating CI edges through
Bayesian ML”
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Pseudo-code

Algorithm 1 GP iterative confidence contour finding

for each iteration t = 1, 2, ... do
Propose new points in parameter space arg maxθ a(θ)
for each point θ′ do

Simulate likelihood ratio distribution
for k = 1, 2, ... do

Perform a pseudo experiment
Maximize the likelihood with respect to (θ, δ)
Maximize the likelihood with constraint θ = θ′

end for
Obtain critical value c(θ′)

end for
Update GP approximation ĉ(θ)
Update confidence contours

end for
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Results : NH, sin2θ23 − δCP
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NH, sin2θ23 − δCP
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NH, sin2θ23 − δCP
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NH, sin2θ23 −∆m2
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NH, sin2θ23 −∆m2
32
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NH, sin2θ23 −∆m2
32
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