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Neutrino Oscillations

> Neutrinos : 2 kinds of states, each of which come in 3 types

> Interacting, i.e what we observe — flavor states (ve, vy, vr)
> Propagating, i.e in between observations — mass eigenstates (v1, 12, v3)

> Principle of superposition connects them via 3 x 3 unitary matrix (Upuns), i.e.

Ve v

vu | = Upmns |12

Ur V3
» Via QM, neutrinos starting out as one flavor can be observed as another (" Oscillations”).
> Well defined probability which depends on :

> Energy of neutrino, E, and length of propagation, L

> mass-squared splittings, Am3,, Am3,, i.e Amg. =m? 2

i~ m;

> Upmns

» For neutrino propagation in vacuum, the oscillation probability in all its glory:

3 3
P(Va = vg) = bap — 4 Y R(UaiUpiUnjUsi) sin®(—2=) + 2> S(Uz; Upi Uay Up;) sin(

i>j i>j

AmjL AmjL
4E, iE, )
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Neutrino Oscillations Contd..

> Upmns commonly parameterized as

1 0 0 cosb13 0 sinfze” %P cosfip  sinfi2 0
UPMNS =10 C05923 sin023 0 ) 1 0 7Sinl912 605912 0
0 —sin923 605923 fsin013e’6CP 0 C05013 0 0 1

» Physics program entails measuring P(vo — vg) to infer Upmns and Amﬁ- parameters

v

Broadly, solar experiments give handle on (21) parameters, reactor experiments for 013

v

Long baseline (LBL) experiments (this talk) gives handle on (32).
> P(vu — v,) sensitive to sin?(2023) and |Am3,|
> Non-zero 613 opens up P(v, — ve) channel, sensitive to dcp, B3 octant and sgn(Am3,)
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Physics Implications

In the LBL context, we want to know if :

» Am%, > 0 or < 07 (Normal or Inverted)

> Identifying mass hierarchy (NH or IH) has
implications for neutrino mass measurements

» Octant of 023 or 6,3 = 45°?

> sindcp # 07
> Lepton sector CP-violation. Gives us a clue
towards explaining matter-antimatter
asymmetry
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Statistical Issues

» Oscillation Parameters are typically measured L .
via MLE using the underlying PMNS model ) Oscillation Probability

2 ‘ S0
and comparing it to observation >
! od NH, sin’,, = 0.44
» However, experiments collect only a handful of = 8., = (0,21
o

statistics. (10 — 100) over years of operation e, = 056

for the v, — ve channel .EC;,=(0.2311) '

» Oscillation probabilities have complicated
dependence on multiple parameters —>

difficult to delineate

0.04

14
o
S

orTT T I

» Confidence Intervals are hard to find as
Likelihood ratios don't satisfy asymptotic L e S R R B

properties. Neutrino Energy (GeV)
> Let's illustrate this with a toy experiment..
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Toy Experiment

> Modelled on NOvVA. Baseline, L = 810km with v, flux peaking at 2GeV
> v, — Ve by multiplying toy shapes for flux, cross-section and oscillation probability.

» 10% normalisation errors on flux and xsec model

v, Flux Oscillation Probability v, Interaction Cross-Section Prediction

Events
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> P(v, — ve) using 3-flavor PMNS with MSW corrections added for matter propagation.
> Similar setup for v, — v, to constrain sin®(2623) and |Am3,| but with 2-flavor approximation
> P(v, — vy) ~ 1 — sin®(203)sin*(Am3,L/4E)
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Toy Experiment
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» Toy data (X) from Poisson variations at some chosen oscillation parameters.
» With (6, 0) denoting list of oscillation and nuisance (flux and xsec errors) parameters,

~

> Best-fit (é, 0) found by minimizing negative log-likelihood over energy bins, i
—2log L(6,0) = —2) _ log Pois(xi; v(6,8):) = > _ xi+ »_ v(0,0); + &
icl icl icl
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Confidence Intervals

> 0o included in the 1 — « confidence contour if we fail to reject the null (6 = 6o) at « level

» Use an Inverted Likelihood Ratio Test (LRT)

» Neyman-Pearson Lemma : Likelihood Ratio (LR) is the most powerful test statistic

Table 38.2: Values of Ax? or 2AInL corresponding to a coverage probability
1 — e in the large data sample limit, for joint estimation of m parameters.

(1-a)(%) | m=1 m=2 m=3
68.27 100 230 353
90. 271 461 625
95. 384 599 782
95.45 400 618 803
9. 663 921 1134
99.73 9.00 1183 1416

From the PDG Review on Statistics
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> Easy to estimate in the asymptotic case as LR is a
X2 distribution. (Wilks Theorem)

> However, that's not the case here!

> Proceed via Unified approach (Feldman-Cousins,

1998)
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Feldman-Cousins

» Seminal result giving an ordering principle for confidence intervals in non-asymptotic cases

» For given 6, explicitly simulate distribution of test statistic, LR via Monte-Carlo experiments at 6o

68% Confidence Contour Threshold

> 68% confidence interval for d¢cp : All dcp
values for which LR for observed data (critical
value) lies within threshold

» Confidence of rejecting given dcp = do given

by percentile of crit(do)
109 ===Smmm e Sem e e

LRT Statistic
&

» Gives us the "correct” confidence interval in

057 — Actual the frequentist sense by construction, since its
0.0 1 === Asymptotic essentially a grid search over the entire
0 i o parameter space.
dcp
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A more efficient FC

> Grid search across multi-dimensional parameter space = extremely intense computational

demands

> It'd be nice to be able to come up with a more refined search algorithm.

Target Surface

PhystatNu - 2019

> We can expect intuitively :

> Given a point in parameter space that is rejected
at high confidence, it is likely that points near it
will also be rejected

> Further, the variation in the LR percentiles ought
to be smooth.

» An efficient search would therefore :

> Learn local features in the LR percentile surface to
guide the search

> Favor simulating the LR test statistic distribution
near the edge of the desired confidence contour
than further out.
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Bayesian Supervised Learning

» Our goal is to approximate the FC percentile surface non parametrically using only a fraction of
the grid points.

» A Bayesian approach can assume a model itself to
be a random variable with a certain probability
distribution.

» Training data updates your priors about the model

> Classical supervised learning — training data to get distribution

best-fit model. o . . o
» Predictions for new data is a posterior distribution

» Predictions for new data are best-guess in model space.

» Quantifies uncertainty in model estimates. Gets
smaller with more training data

» Can be pretty non-parametric
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Gaussian Process

» Special case of Bayesian Learning. Model distribution is an extension of multivariate gaussians to
function space.

» Technically, its a probability measure defined over co-dim function space parameterized only by a
mean function, u(x) and a covariance function (kernel), k(x, x")

> We say, f ~ GP(u, k(-,-)) if

(e )i PLaes @b b

> Intuitively, we can picture each draw from a GP(u, k(-,-)) giving us a different 7(x) with the
average result being u(x)

> The kernel encodes the correlation between nearby points. A commonly used kernel is the radial
basis function, k(x, x") = exp(—(x — x')?/I?)

> A RBF kernel tells us that GP results at nearby points are highly influenced by observations at a
given point while further out, they aren't.
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Why GPs?

Gaussian Process

1.0
» Enormously flexible! Can basically approximate any 05 igﬁ:rior
well behaved function with an appropriate choice of ’
the kernel. £ 064
» Predictions at new data points are computationally g
tractable with basic linear algebra, i.e for & 041
P(0, k(-,-)) :
GP(0. k("))
k(x,x") ;o k(x,x)?
FXF(x) ~ N~ F(x), k(x', x") — =222 0.0 1 ; ;
CONAL) ~ NG 70, k() = 5B : :

» Kernel hyperparameters can be learned via maximising the likelihood of current set of observations
marginalised over the function distribution, f
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GPs in Literature

> GPs in HEP : arXiv:1709.05681, M. Frate, K. Cranmer et al. Using GPs to describe background
spectra in dijet resonance searches at the LHC non-parametrically.

» Used in Astrophysics for modelling stochasticity of light yields in stars, active galactic nuclei etc
> Many other fields!
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GPs for FC

» Fitting a GP to target percentile surface for a given contour. (Stochasticity of the target surface)

» "Observation” at a given point in parameter space, § means simulating the LRT distribution and
finding the percentile of crit(6)

» Choose a RBF Kernel with an additional term incorporating variance of percentile estimate at 6.

Monte Carlo Uncertainty
0.04

> k(-,-) = keer (") + o3l

» The additional variance encodes the binomial error
resulting from throwing finite number of
experiments to simulate the LRT distribution at 0

0.03

p-value Error
5
!

0.01 1 > Allows us to incorporate varying number of
experiments thrown into the Cl search, reducing
0.00 = computational burden further.

0 2000 4000 6000 8000 10000
Number of Experiments
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Optimised Confidence Interval Search

> Use an acquisition function that proposes new points in 6-space to explore based on GP
approximated percentile surface.

aq(9

> Here, §(6) is GP mean, og49) is GP std-dev, «; is chosen to be (0.68,0.90)
» a(f) balances between exploration, i.e MC experiments at new points and exploitation, i.e
reducing GP error

Target Surface Priority

100

80

60

40

20
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Optimised Confidence Interval Search
> Use an acquisition function that proposes new points in 6-space to explore based on GP

4(0) —
Z R T4(0)

> Here, §(6) is GP mean, og49) is GP std-dev, «; is chosen to be (0.68,0.90)
» a(f) balances between exploration, i.e MC experiments at new points and exploitation, i.e

approximated percentile surface.

reducing GP error
Priority

Target Surface

sin? O3

“. !
2 0.7 20 LB BcP ()
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Results

» "Real” data similar to latest best-fit estimate from NOVA. (sin2023 = 0.56,
Ami, =2.44 x 103eV?, §cp = 1.57)

> sin*0x — dcp 68% and 90% ClI for IH after 5 iterations

Sampled Points Confidence Contours
0.7 0000000 0.7
1111111 S e
) e ©8989 —-—- 68% FC o “'n
067 § @ eoce 0.6 1 90% GP N )
S 1 68% GP N ~
& 00000 & oo >
5 05 0000 < 05
@ &
0.4 4 04 1
0.3 A
T T T T 0.3 T T T
0 0.57 I 1.57 2 0 0.5m T 1.57 27
dcp dcp

> Grayscale denotes number of experiments thrown in relation to FC (2000)

» Algorithm does a good job of finding the FC contour edge!

PhystatNu - 2019 17 / 32 Lingge Li, Nitish Nayak, Jianming Bian, Pierre Baldi



Results

> "Real” data similar to latest best-fit estimate from NOVA. (sin’62; = 0.56,
Am3, = 2.44 x 107%eV?, §cp = 1.57)

> sin*0x — dcp 68% and 90% Cl for NH after 5 iterations

Sampled Points Confidence Contours
0.7 0.7
eoe
@ oe ] :
00 e
[ X<} [ ]
0.6
[ X J
" e o © ° "
& ] 3
S 05 g83° S Ny
= =
@ 8o a 90% FC
0.4 [ ] 3 —== 68% FC
’ H s 044 —— 90% GP
0.3 - ®9 S 68% GP
0 0.57 T 1.57 2m 0 0.5m L 1.57 2
dcp dcp
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Results

v

v

Percentile

"Real” data similar to latest best-fit estimate from NOvVA. (sin*0; = 0.56,

Am3, = 2.44 x 1073eV?, §cp = 1.57)

Significance of rejecting dcp only after 5 iterations. (Percentile converted to Z-score significance)

Gaussian Process Given Sampled Points

1.0 1 — GP
————————————————— Truth
@ Sampled Points
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Results

» 200 different runs for "real” data at the same point as before.

» Use classification accuracy of all grid points, taking FC result as truth, to evaluate performance.

> Progress shows the search algorithm converges to the FC value ~ 10x faster for 2D case and
~ 5x for 1D case

Accuracy

200 Contours for dcp vs sin? fag
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0.975 1
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0.875 -
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Computation

10%

Accuracy

200 Intervals for dcp

1.000

0.975
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0.900
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Computation

> Median Accuracies for 1D is 100%, for 2D is > 99.5% (both NH, IH)
» Mean Accuracies for 1D is 98.5% (99.8%) for NH (IH), for 2D is > 99% (both NH, IH)
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Summary and Conclusions

» Neutrino oscillation experiments provide interesting test case for estimating frequentist confidence
intervals

> LBL experiments typically proceed via Feldman-Cousins

» However, simulating LRT distributions across multi-dimensional parameter space requires huge
computational resources

» We've studied a Bayesian approach using Gaussian processes on a toy LBL set-up

» Helps us estimate frequentist contour edges to quite a high accuracy without having to sample the
entire parameter space!

» Order of magnitude gain in computation!

> All code with illustrative notebooks here : https://github.com/nitish-nayak/ToyNuOscCI,
maintained by Lingge (linggeli7@gmail.com) and myself (nayakb®uci.edu)
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https://github.com/nitish-nayak/ToyNuOscCI

Backup
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GP Technical Details

» Rasmussen and Williams has a good discussion about convergence to true functions in regression
settings (typically using squared loss functions) :
http://www.gaussianprocess.org/gpml/chapters/RW7.pdf

> Well behaved = expressible as a generalised fourier series of kernel eigenfunctions
» If kernel is non-degenerate, approximation is guaranteed to converge to true function
> If degenerate, convergence towards an L, approximation of the true function

» Rates of convergence typically depends on mean and kernel smoothness as well as smoothness of
the true function
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http://www.gaussianprocess.org/gpml/chapters/RW7.pdf

GP Fitting

> Hyperparameters (w) learned via maximising log marginal likelihood :

p(y|X, w) = / p(y/X, w, F)p(fIX, w)df

v

Clearly,
fIX, w ~ N(0, K(X,w))

v

Some algebra gives us :
—2log p(y|X,w) =y" K 'y + log |K| + nlog 2x

» Minimising above equation gives us a good choice for w

v

log|K| acts as a penalty term for complexity and therefore reduces overfitting to data
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GP for

FC

" Gaussian” not a statement of the underlying distribution of the test statistic, which can still be
heavily non-Gaussian

Rather, " Gaussianity” for a stochastic process generating the test statistic distributions.
Stochasticity mostly from finite FC grid resolution or finite number of MC experiments for
simulating the test statistic distribution

Assumption we're making for this stochasticity is that it can be parameterised by a kernel
describing the relationship between the distributions at neighbouring points = multi-variate
gaussian

Also important to note, no real statement about FC coverage or handling of nuisance parameters.
Assumes FC gives desired level of coverage

Confidence Intervals still with frequentist interpretation

Bayesian interpretation for " classification probability” of points in parameter space for desired
confidence regions

A good summary would be " Accelerating Frequentist Cl search by estimating Cl edges through
Bayesian ML"
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Pseudo-code

Algorithm 1 GP iterative confidence contour finding

for each iteration t =1,2,... do
Propose new points in parameter space arg max, a(6)
for each point ¢’ do
Simulate likelihood ratio distribution
for k=1,2,... do
Perform a pseudo experiment
Maximize the likelihood with respect to (6, d)
Maximize the likelihood with constraint § = ¢’
end for
Obtain critical value c(6")
end for
Update GP approximation &(6)
Update confidence contours
end for
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Results : NH, sin®023 — d¢cp

Number of Points Explored
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NH, sin2923 - 5CP
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NH, sin2923 - 5CP

Contours by Area Quartile
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NH, sin?023 — Am3,

Target Surface
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NH, sin?023 — Am3,

Sampled Points
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NH, sin?023 — Am3,

200 Contours for sin? fs3 vs Am2,
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