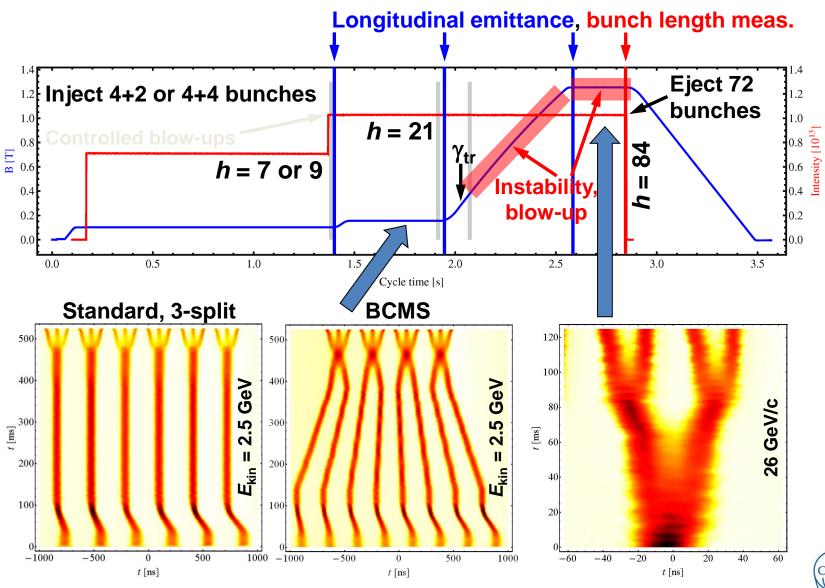


LHC Injectors Upgrade

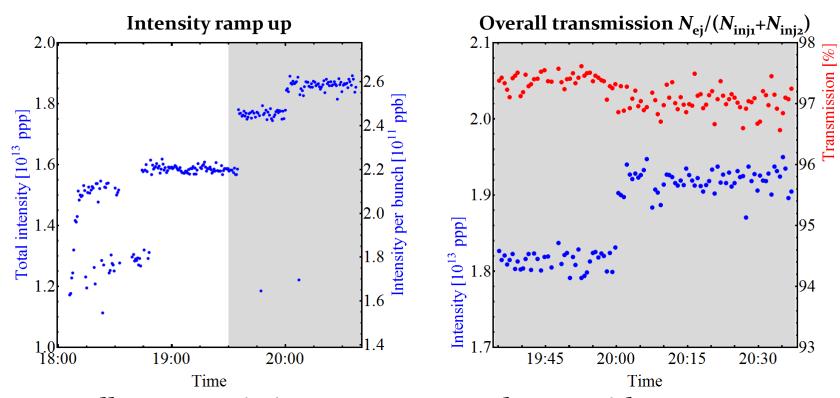
Many thanks to F. Bertin, G. Favia, M. Haase, A. Huschauer, M. Morvillo, E. Shaposhnikova, M. Vadai

- Introduction
- Observations at high intensity
 - Comparison of 2017 and 2018 data
 - Standard 72-bunch beam
 - BCMS beam
- Changes during YETS2017/18
 - RF
 - Vacuum interventions
- High-frequency cavity impedances and feedback
- Summary and outlook


Introduction

- Observations at high intensity
 - Comparison of 2017 and 2018 data
 - Standard 72-bunch beam
 - BCMS beam
- Changes during YETS2017/18
 - RF
 - Vacuum interventions
- High-frequency cavity impedances and feedback
- Summary and outlook

LHC-type beams with 25 ns spacing in the PS



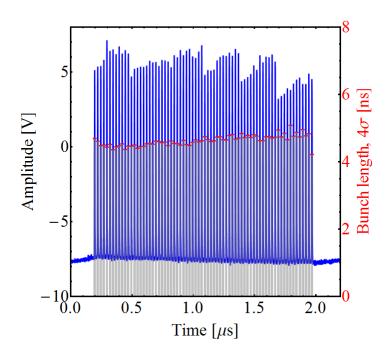
Higher intensity?

Injector MD Days 2017

Pushing intensity at expense of larger longitudinal emittance

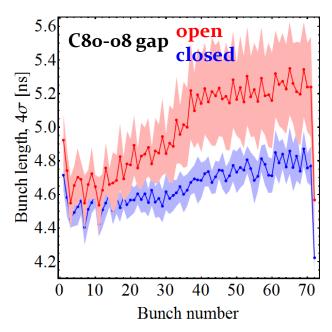
- \rightarrow Bare minimum of 40/80 MHz cavities with gap open (C40-78, C80-88, C80-89)
- → Trips of remaining cavities C40-78 and C80-08 due to beam loading
- \rightarrow Measurements difficult to perform, almost like dedicated MDs

- \rightarrow Excellent transmission up to 2.6 · 10¹¹ ppb, even with $\varepsilon_l > 0.35$ eVs
- → No further RF issues related to intensity



Longitudinal beam quality

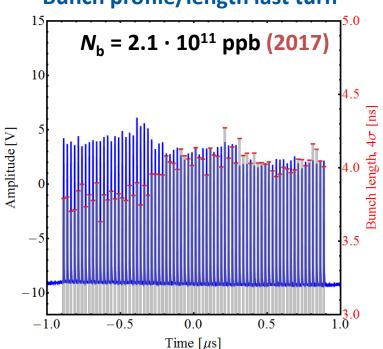
Injector MD Days 2017

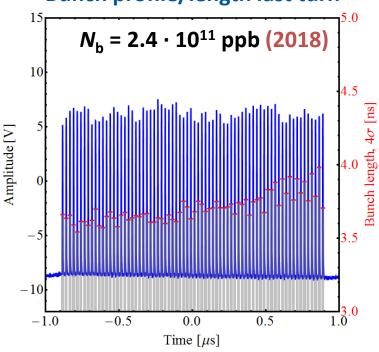

Longitudinal parameters at LIU/HL-LHC baseline intensity: 2.6 · 1011 ppb

→ Additional longitudinal blow-up

- Bunch length increase along the batch
 - → Onset of instability

- Average ε_1 at arrival on flat-top: 0.3 eVs (RMS, 4 final bunches)
- Corresponds to ~0.45...0.5 eVs per bunch in usual convention

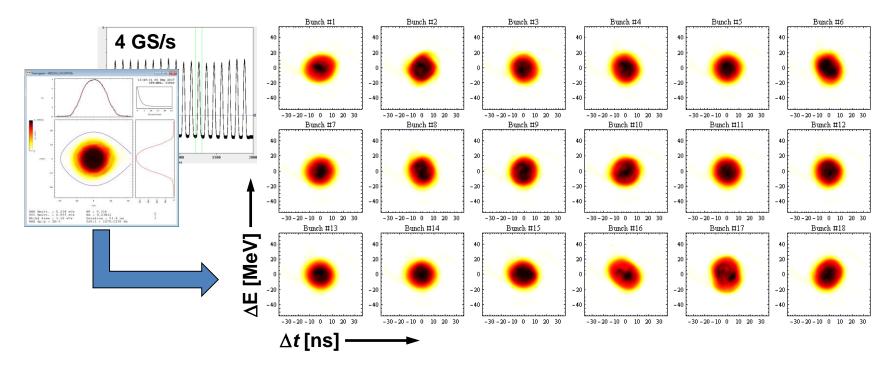



LHC25ns (standard), 72 bunches

- Beam seems longitudinally in better shape than in 2016/2017
 - Standard beam stable beyond 2·10¹¹ ppb, more for BCMS
 - Change with respect to 2016 and 2017 not fully understood

Bunch profile/length last turn

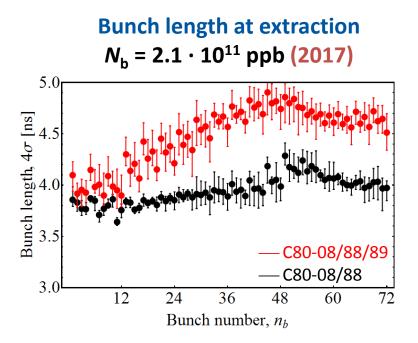
Bunch profile/length last turn

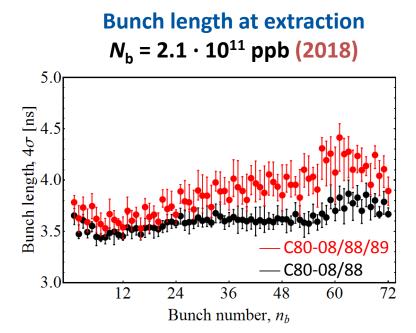

→ Clearly shorter bunches at extraction compared to 2017

Multi-bunch tomography

- Record almost full turns with 4 GS/s
- Reconstruct longitudinal distribution of each bunch individually

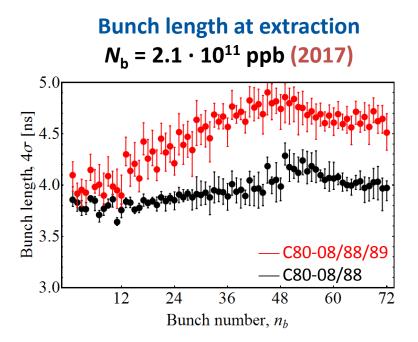
- → Common foot-tangent fit definition (0.35 eVs/b) varies with bunch shape
- \rightarrow Choice of analysing statistical emittances (90%), ε_{I,foot-tangent} ≈ 1.4 ε_{I,90%}
- → 10 cycle average to reduce and evaluate cycle-to-cycle fluctuations

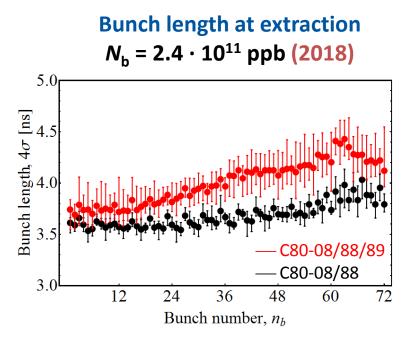

- Introduction
- Observations at high intensity
 - Comparison of 2017 and 2018 data
 - Standard 72-bunch beam
 - BCMS beam
- Changes during YETS2017/18
 - RF
 - Vacuum interventions
- High-frequency cavity impedances and feedback
- Summary and outlook



LHC25ns (72 bunches), final bunch length

- Bunch length along the batch, 4σ Gaussian fit
- Compare two and three 80 MHz cavities with gaps open

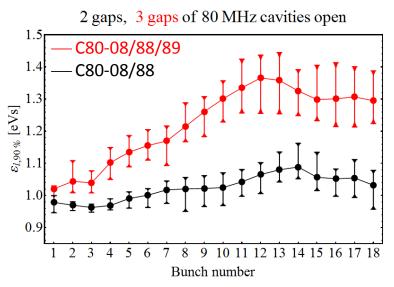

→ Bunch length dominated by rotation or longitudinal emittance?

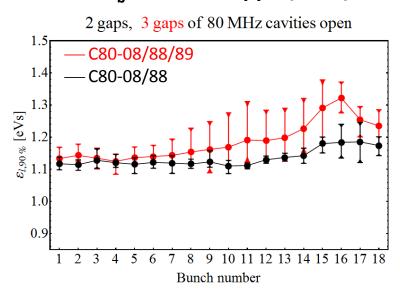


LHC25ns (72 bunches), final bunch length

- Bunch length along the batch, 4σ Gaussian fit
- Compare two and three 80 MHz cavities with gaps open

→ Bunch length dominated by rotation or longitudinal emittance?



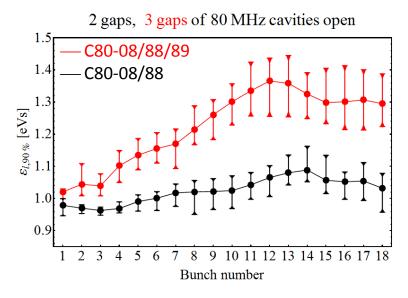

LHC25ns (72 bunches), emittance at flat-top

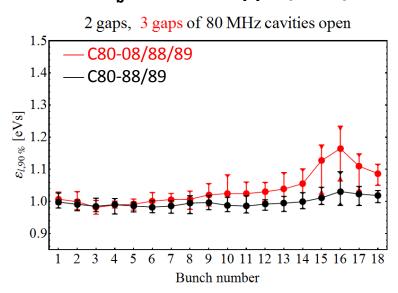
Multi-bunch tomography at arrival on flat-top (before 4-split)

Emittance, ε_{l} at flat-top arrival $N_{h} = 2.1 \cdot 10^{11} \text{ ppb (2017)}$

Emittance, ε_{l} at flat-top arrival $N_{b} = 2.4 \cdot 10^{11} \text{ ppb } (2018)$

- Longitudinal emittance at flat-top initially ~10% larger
 - → Shorter bunches with larger emittance → rotation parameters
- Intensity during 2018 measurements ~15% above 2017 values
- → Effect of 3rd 80 MHz cavity gap seems less strong



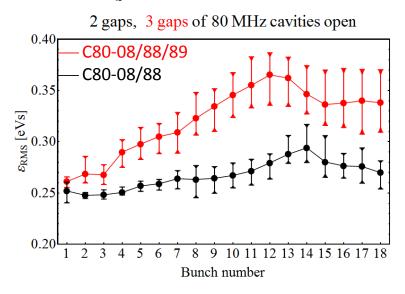

LHC25ns (72 bunches), emittance at flat-top

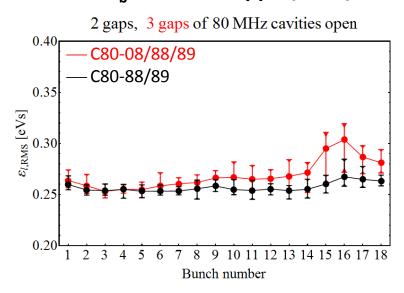
Multi-bunch tomography at arrival on flat-top (before 4-split)

Emittance, ε_{l} at flat-top arrival $N_{h} = 2.1 \cdot 10^{11} \text{ ppb (2017)}$

Emittance, ε_{l} at flat-top arrival $N_{h} = 2.1 \cdot 10^{11} \text{ ppb } (2018)$

- Comparison of very similar longitudinal parameters
- → Significantly smaller emittance growth along the batch
- → Beam seems more stable than in previous years




LHC25ns (72 bunches), emittance at flat-top

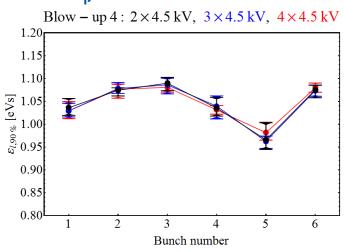
Multi-bunch tomography at arrival on flat-top (before 4-split)

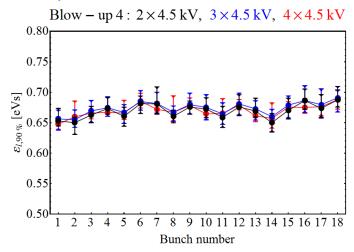
Emittance,
$$\varepsilon_{l}$$
 at flat-top arrival $N_{b} = 2.1 \cdot 10^{11} \text{ ppb (2017)}$

Emittance, ε_{l} at flat-top arrival $N_{h} = 2.1 \cdot 10^{11} \text{ ppb } (2018)$

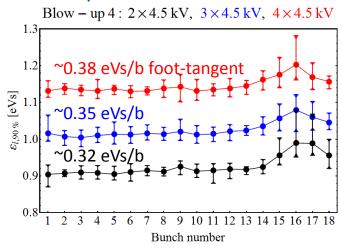
- Comparison of very similar longitudinal parameters
- → Significantly smaller emittance growth along the batch
- → Beam seems more stable than in previous years
- → Similar behaviour for RMS and 90% emittance

- Introduction
- Observations at high intensity
 - Comparison of 2017 and 2018 data
 - Standard 72-bunch beam
 - BCMS beam
- Changes during YETS2017/18
 - RF
 - Vacuum interventions
- High-frequency cavity impedances and feedback
- Summary and outlook




LHC25ns (72 bunches), emittance during cycle

Intensity per bunch at extraction, $N_b = 2.4 \cdot 10^{11}$ ppb

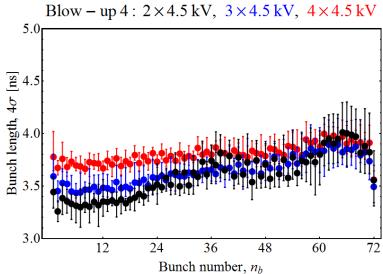

ε_{l} , start of acceleration

ε_{l} , after intermediate plateau

ε_{l} , arrival at flat-top

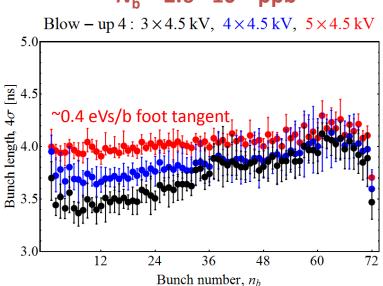
→ Emittance measurements very reproducible

- Cycle-to-cycle
- During several hours
- \rightarrow Little dependence of growth along batch on absolute ε_I



LHC25ns (72 bunches), length at extraction

Beam parameters at ~2.4 · 10¹¹ ppb


Bunch length at extraction

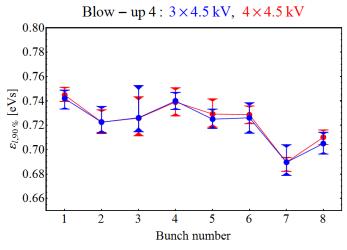
$$N_{\rm b} = 2.4 \cdot 10^{11} \, \rm ppb$$

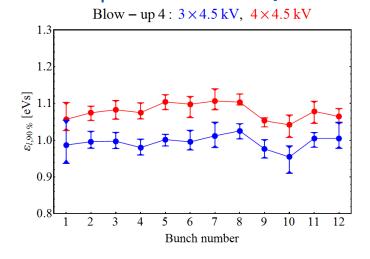
Bunch length at extraction

$$N_{\rm b} = 2.6 \cdot 10^{11} \, \rm ppb$$

→ Pushing intensity beyond 2.4 · 10¹¹ ppb requires blow-up to > ~0.35 eV/bunch (foot-tangent fit)

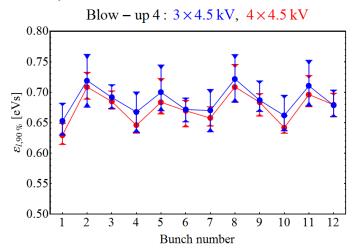
- Introduction
- Observations at high intensity
 - Comparison of 2017 and 2018 data
 - Standard 72-bunch beam
 - BCMS beam
- Changes during YETS2017/18
 - RF
 - Vacuum interventions
- High-frequency cavity impedances and feedback
- Summary and outlook





LHC25ns (BCMS, 48 bunches), emittance

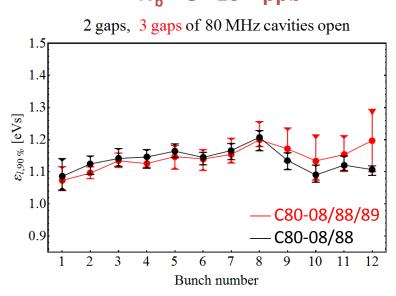
Intensity per bunch at extraction, $N_b = 2.6 \cdot 10^{11} \text{ ppb}$


ε_{l} , start of acceleration

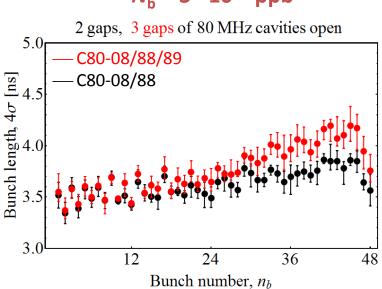
 ε_{l} , arrival at flat-top

ε_{l} , after intermediate plateau

- → Emittance measurements again very reproducible
- → Few percent blow-up at flatbottom
 - Removed by controlled blow-up
- → No growth along the batch



LHC25ns (BCMS, 48 bunches), bunch length

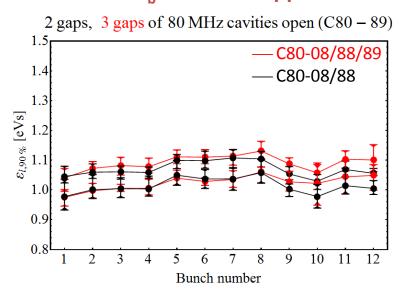

Intensity increased up to ~3 · 10¹¹ ppb (1.5 · 10¹³ ppp in total)

Emittance, ε_{l} at flat-top arrival $N_{b} = 3 \cdot 10^{11} \text{ ppb}$

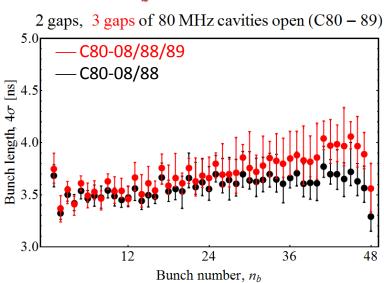
Bunch length at extraction

$$N_{\rm b} = 3 \cdot 10^{11} \, \rm ppb$$

- Emittance growth during RF manipulation at flat-top
- Little data from 2017 high-intensity BCMS beam for comparison
- Again, potential issue with ~10% too large emittance
- \rightarrow Redo measurements at $N_{\rm b}$ = 2.6 10¹¹ ppb and nominal $\epsilon_{\rm l}$



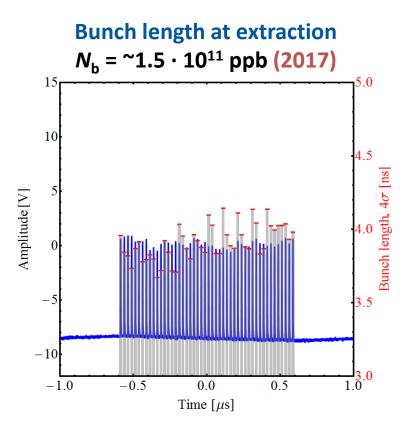
LHC25ns (BCMS, 48 bunches)


Beam parameters at ~2.6 · 10¹¹ ppb

Emittance, ε_{l} at flat-top arrival $N_{h} = 2.6 \cdot 10^{11} \text{ ppb}$

Bunch length at extraction

$$N_{\rm b} = 2.6 \cdot 10^{11} \, \rm ppb$$



- Little data from 2017 high-intensity BCMS beam for comparison
- Again, potential issue with ~10% too large emittance
- → Emittance dependent blow-up during high-energy manipulations

LHC25ns (BCMS), 48 bunches, bunch length

- Bunch length along the batch, 4σ Gaussian fit
- Examples for 2017 operational and 2018 high-intensity beams

→ Triple splitting sensitive to transient beam loading

- Introduction
- Observations at high intensity
 - Comparison of 2017 and 2018 data
 - Standard 72-bunch beam
 - BCMS beam
- Changes during YETS2017/18
 - RF
 - Vacuum interventions
- High-frequency cavity impedances and feedback
- Summary and outlook

Changes during YETS2017/18

RF upgrades

- New anode power converters 40 MHz and 80 MHz cavities
 - No significant impedance change
 - Expected reduction (~35%) with new summing amplifier in direct feedback loop of cavity C80-88 not visible with beam
 - Re-measure impedance of C80-89 after technical stop changes
 - Saturation of feedback not visible with detected signals?
- New power supplies for Finemet cavity amplifiers
 - Coupled-bunch feedback not tripping anymore
 - Saturation of drive power with previous supplies?
 - ✓ Beam based phase check of all six gaps after technical stop
 - Evaluate differences of feedback operation with 4/6 gaps
- New pre-driver amplifiers for 10 MHz cavities
 - No effect on direct wide-band feedback
- 200 MHz amplifier upgrade
 - Same coupling of cavities with amplifiers (final stage unchanged)
- RF bypass measurement campaign
 - Small number of non-conformities, as every year
- → No modification of feedback setting-up procedures
- → None of the changes explains performance improvement

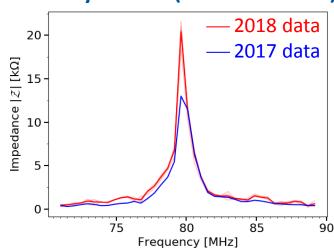
Changes during YETS2017/18

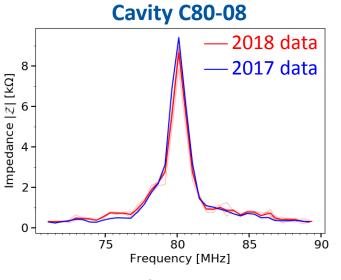
Vacuum interventions

- Septa SMH16, SEH23 and SMH42
 - No additional RF shielding in swapped devices
 - Regular preventive maintenance
- Wire scanner in SS54
 - Prototype wire scanner of new design
 - Minor contribution to longitudinal impedance expected
- Exchange of BGI instrument SS82
 - No contribution to longitudinal impedance expected
- Wire scanner SS85
 - One-to-one exchange by identical unit
- New BTV screen in magnet unit 41
 - Minor contribution to longitudinal impedance expected

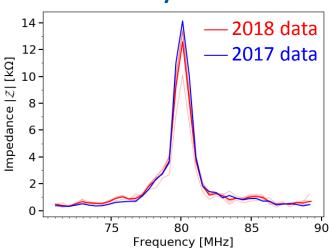
→ Insignificant effect on longitudinal impedance expected

- Introduction
- Observations at high intensity
 - Comparison of 2017 and 2018 data
 - Standard 72-bunch beam
 - BCMS beam
- Changes during YETS2017/18
 - RF
 - Vacuum interventions
- High-frequency cavity impedances and feedback
- Summary and outlook

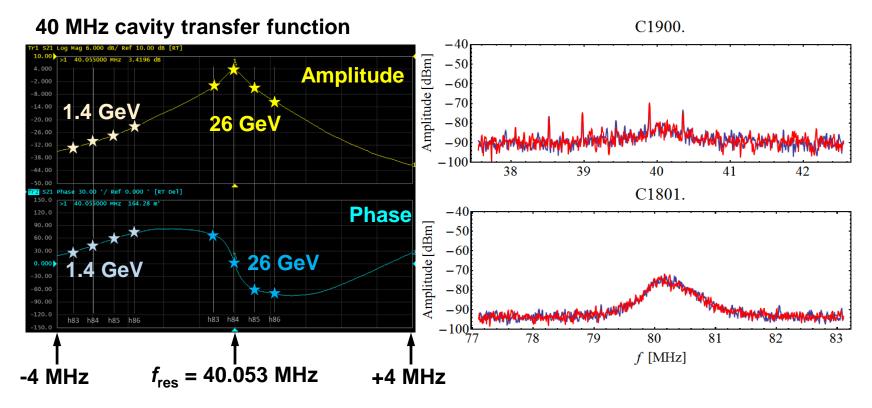




Impedance of 80 MHz cavities


- Same procedure as in 2017
- Preliminary results from beam-based impedance for 80 MHz cavities
- → No significant change in impedance

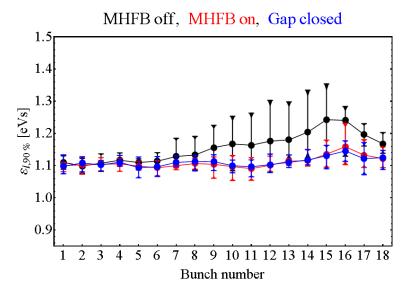
Cavity C80-89 (tuned for Pb⁵⁴⁺)

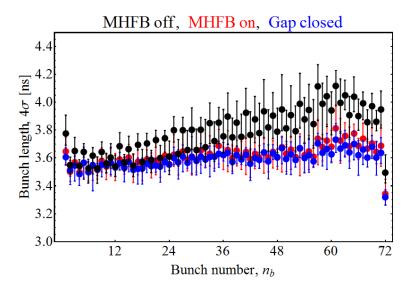

→ To be completed with measurements of 40 MHz cavities and new measurements of modified C80-89 after technical stop

Beam measurements with feedback

- ┈
- Reduce cavity impedance at $n \cdot f_{rev}$ with adaptive filter bank feedback
 - → Prototype validated in 2017 for both 40 MHz and 80 MHz RF system

- → Significant reduction of beam induced voltage
- → Impact on longitudinal beam quality?

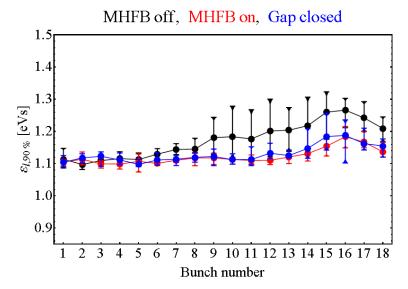



Multi-harmonic feedback on 80 MHz cavity

Effect of multi-harmonic feedback at ~2.1 ⋅ 10¹¹ ppb

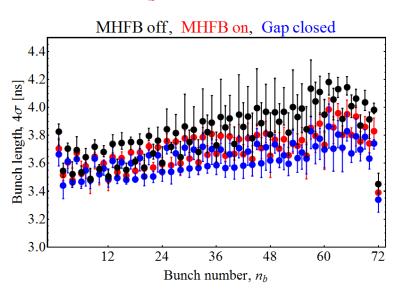
Emittance, ε_{l} at flat-top arrival $N_{b} = 2.1 \cdot 10^{11} \text{ ppb}$

Bunch length at extraction $N_b = 2.1 \cdot 10^{11} \text{ ppb}$



Multi-harmonic feedback on 80 MHz cavity

Effect of feedback at ~2.1 and 2.4 · 10¹¹ ppb


Emittance, ϵ_{I} at flat-top arrival

$$N_{\rm b} = 2.4 \cdot 10^{11} \, \rm ppb$$

Bunch length at extraction

$$N_{\rm b} = 2.4 \cdot 10^{11} \, \rm ppb$$

- Very promising results with multi-harmonic feedback
 - → Emittance and bunch length as if gap was mechanically closed
- Preparing installation on both 80 MHz cavities used for protons

- Introduction
- Observations at high intensity
 - Comparison of 2017 and 2018 data
 - Standard 72-bunch beam
 - BCMS beam
- Changes during YETS2017/18
 - RF
 - Vacuum interventions
- High-frequency cavity impedances and feedback
- Summary and outlook

- New anode power converters of 40 and 80 MHz cavities
 - ✓ Operation at highest intensities much more reliable
- New power supplies for amplifiers of Finemet cavity
 - ✓ Coupled-bunch feedbacks active until extraction
 - √ No spurious cavity trips anymore
- Standard 25 ns, 72-bunch beam
 - About 15% higher beam intensity, $2.1 \rightarrow 2.4 \cdot 10^{11}$ ppb
- BCMS 25 ns, 72-bunch beam
 - LIU intensity of 2.6 · 10¹¹ ppb potentially within reach
- Uncontrolled emittance growth for tail bunches at flat-top
- Beam quality to be checked in SPS, as far as possible
- However: Still investigating source of improvement in 2018
- If not understood, may flip back to pre-2018 conditions



Future studies with beam in 2018

- Set-up BCMS beam at 2.1 and 2.6 · 10¹¹ ppb with smallest possible longitudinal emittance
 - Experience in SPS at ~2.1 · 10¹¹ ppb with 2018 BCMS
- Complete cavity impedance studies
 - Re-measure 80 MHz cavity, C80-89 following improvements during technical stop
- Check influence of longitudinal blow-up on distribution
 - Post acceleration to quantify tails
- Multi-harmonic feedback on multiple 40 and 80 MHz cavities
 - Reduction of emittance growth along batch at flat-top

LHC Injectors Upgrade

THANK YOU FOR YOUR ATTENTION!

