
1

Analyzing astronomical data with Apache Spark

Julien Peloton
with Christian Arnault, Stéphane Plaszczynski & Jean-Eric Campagne

Laboratoire de l’Accélérateur Linéaire

July 16, 2018

Julien Peloton Analyzing astronomical data with Apache Spark

mailto:peloton@lal.in2p3.fr

2

The Large Synoptic Survey Telescope (LSST)

Start observation in 2022,
10 year survey of the sky
from Chile.

Goal: among several,
understanding Dark Energy.

Collaboration: International,
1000+ contributors.

Julien Peloton Analyzing astronomical data with Apache Spark

3

Entering a big data era

3200 megapixel camera (each image has the size of 40 full
moons), O(15) TB every night.

Catalogs of 37 billion stars and galaxies at the end (> 2
orders of magnitude wrt current ones) + mocks.

Traditional tools are not always adapted for the analysis:

A popular file format to store and manipulate astro data is
FITS: not serialized.
Standard database tools: data ingestion takes a long time.
Standard analysis tools: reproducibility of the analysis is
challenging, interactivity becomes impossible, scalability will be
a nightmare.

→ what could bring current big data technology in this context?

Julien Peloton Analyzing astronomical data with Apache Spark

https://fits.gsfc.nasa.gov/

4

Spark@LAL: evolution 2016–now

Goal: provide a realistic experimental environment, integrated in
the cloud@VirtualData platform, to overcome big data challenges.

Y 2017 Y 2018 Y 2019

Initial meetings*

Initial funding (ERM/MRM)

Cluster upgrade

Multi-tenant, R&D

Prospect for astronomy

Genomics project

Dev for astronomy
* Spark@u-psud Aug 2015, Spark@VirtualData Feb 2016

Julien Peloton Analyzing astronomical data with Apache Spark

5

AstroLab Software

AstroLab Software is a project started at LAL to promote the
development and the use of big data solutions in astrophysics.

Julien Peloton Analyzing astronomical data with Apache Spark

https://astrolabsoftware.github.io

6

spark-fits: Interfacing FITS format with Spark

FITS: standardized for more
than 30 years (backward
compatible).

spark-fits is a native
Spark connector, similar to
what spark-root does.

Written in Scala. API for
Scala, Python, Java and R.

Support FITS data source
for Spark SQL and
DataFrames.

HEADER # 0

DATA # 0

HEADER # 1

DATA # 1

// Define a DataFrame with the

// data from the first HDU

val df = spark.read

.format("fits")

.option("hdu", 1)

.load("hdfs://...")

Julien Peloton Analyzing astronomical data with Apache Spark

7

spark-fits: Interfacing FITS format with Spark

Some problems encountered

There is no FITSIO in Scala. Solution: write a new library to
handle FITS format in Scala (and make it serializable!).

FITS organised by blocks (header+data): all executors must
know the header. Solution: register it in the
org.apache.hadoop.conf.Configuration.

Scala not so much used in the Astro community. Solution:
capitalize on the Apache Spark tools to have API for Python,
Java, and R.

Julien Peloton Analyzing astronomical data with Apache Spark

8

spark-fits: Interfacing FITS format with Spark

Proof-of-concept: Peloton et al. (arXiv:1804.07501).
Most benchmarks run on Spark@LAL (153 cores, 150 GB
memory for cache).

101 102 103

Volume of data (GB)

100

101

102

103

Ite
ra

tio
n

Ti
m

e
(s

)

in memory. memory and disk

No cache
Data cached, first iteration
Data cached, later iterations

Julien Peloton Analyzing astronomical data with Apache Spark

https://arxiv.org/abs/1804.07501

9

spark-fits: Interfacing FITS format with Spark

Apache Spark on state-of-the-art HPC infra (DFS: Lustre):
Distribute up to 1.2 TB in 1 minute over 1280 cores (∼ 20
GB/s), and then manipulate them in few seconds.

First
iteration

Later
iterations

0

20

40

60

Ite
ra

tio
n

tim
e

(s
) 69

.5

2.
4

(1 OST)

First
iteration

Later
iterations

57
.1

2.
1

(8 OSTs)

1.2 TB, 1280 cores (@NERSC)

Julien Peloton Analyzing astronomical data with Apache Spark

10

Apache Spark for astronomers

Apache Spark for astronomers: Plaszczynski et al.
(arXiv:1807.03078).

Simulate 10 years of LSST data (112 GB, 6.109 galaxies);
analyze them interactively: statistics, histograms and
tomography within seconds.

z [0.61, 0.82]

250 350

Julien Peloton Analyzing astronomical data with Apache Spark

https://arxiv.org/abs/1807.03078

11

spark3D: Manipulating 3D data sets

Develop methods specific to 3-dimensional data sets.
Google Summer of Code 2018 project (CERN-HSF).
Space partitioning, cross-match, neighbour search, queries,
Optimized for large data sets, and support a wide range of
data sources: FITS, ROOT (≤6.11*), HDF5 + all the v2
Spark data sources (CSV, JSON, TXT, parquet, ...)

*forward-compatibility issue. thx @vkhristenko.

Julien Peloton Analyzing astronomical data with Apache Spark

12

spark3D: Manipulating 3D data sets

K nearest neighbours* using TrackML challenge data

* Preliminary. Brute force method (distributed) takes < 1s for 100,000 points and K=5000. For larger dataset

(> 109 points) need to fix substantial increase in wait time during garbage collection... Re-partitioning (Tree) and
indexing to come. ** z axis has not the same scale as x and y axes.

Julien Peloton Analyzing astronomical data with Apache Spark

https://www.kaggle.com/c/trackml-particle-identification

13

Binding or native implementation?

Typical question: dev should be made in Scala or Python?

For simple tasks, the Scala and Python API perform the same.

For complex tasks, the Scala API often outperforms the
Python one. But the Python scientific ecosystem is much
wider than the Scala one.

→ To me, which language to use in priority remains an open
question :-(

Beware though....

Big data is also about handling the IO correctly in a code.

Interfacing outside world code can turn out to be a nightmare
just because of the way IO is handled internally... and OO is
not always your best friends!

Julien Peloton Analyzing astronomical data with Apache Spark

14

Interfaces: Bring Scala and others together

R&D around language binding.

Spark works best with Scala under the hood, but scientific
libraries mostly in imperative languages rather declarative...

API already exist for Python, Java, and R, but one would like
ideally to be able to use of our beloved C/C++/Fortran
libraries within Spark.

Currently, this is more testing what is available (e.g. JEP,
JNA) rather than developing new tools from scratch.

Julien Peloton Analyzing astronomical data with Apache Spark

15

END

Thanks

Julien Peloton Analyzing astronomical data with Apache Spark

16

Spark cluster: current numbers

Main cluster

CentOs7

1+1+9 virtual machines
(openstack)

18+18+162 physical cores

IO bandwidth of 2.3 GB/s

35 TB of storage (volume
cinder HDFS)

300 GB of memory

Overview of components

DFS: HDFS (Hadoop 2.8.4)
on Ceph.

Cluster manager: YARN

Framework: Apache Spark
(2.3.0)

Monitoring: Ganglia 3.7
(+Spark/YARN UI)

Alert: Monitoring linked to
Slack (webhook)

Julien Peloton Analyzing astronomical data with Apache Spark

17

Current + future plans (and problems to solve...)

Multi-tenant system:

How to decouple efficiently data from computation?
batch, interactive (SWAN?)
In test currently: Hue (Hadoop User Experience)

Finer control and monitoring of the resources.

DFS: other as S3?

Hosting vs streaming the data? What would be the best
choice for experiments (and us)?

Apache Kafka?

High availability: Zookeeper?

Julien Peloton Analyzing astronomical data with Apache Spark

18

Links

AstroLab Software:
https://astrolabsoftware.github.io/

spark-fits:
https://astrolabsoftware.github.io/spark-fits/

spark3D:
https://astrolabsoftware.github.io/spark3D/

Julien Peloton Analyzing astronomical data with Apache Spark

https://astrolabsoftware.github.io/
https://astrolabsoftware.github.io/spark-fits/
https://astrolabsoftware.github.io/spark3D/

