Tracking Machine Learning Challenge - a half way through review

@trackmllhc

الملالا للمالية ال

A. Salzburger (CERN) @SaltyBurger

TrackML Who and How

Organisation team:

Jean-Roch Vlimant (Caltech), Vincenzo Innocente, Andreas Salzburger (CERN), Isabelle Guyon (ChaLearn), Sabrina Amrouche, Tobias Golling, Moritz Kiehn (Geneva University),David Rousseau, Yetkin Yilmaz (LAL-Orsay), Paolo Calafiura, Steven Farrell, Heather Gray (LBNL), Vladimir Vava Gligorov (LPNHE-Paris), Cécile Germain, Victor Estrade(LRI-Orsay),Edward Moyse (University of Massachussets), Mikhail Hushchyn, Andrey Ustyuzhanin (Yandex, HSE)

Partners:

<u>Sponsors:</u>

Introduction Charged particles

Tracking at LHC, HL-LHC and FCC-hh

Pattern recognition is due to combinatorial behavior main CPU driver - many improvements done, but still missing a factor 5-10 from trigger rate increase

Submission

Submission & scoring

Winning

The challenge in 2 phases

Phase 1 Accuracy kaggle*

Phase 1 Winners

Public I	Public Leaderboard Private Leaderboard												
The private leaderboard is calculated with approximately 71% of the test data. CREFT Refresh This competition has completed. This leaderboard reflects the final standings.													
📕 In the	money	Gold Silver	Bronze										
#	∆pub	Team Name	Kernel	Team Members	Score @	Entries	Last						
1	_	Top Quarks		😌 🐴	0.92182	10	2mo						
2	_	outrunner			0.90302	9	2mo						
3	_	Sergey Gorbunov			0.89353	6	2mo						
4	_	demelian			0.87079	35	2mo						
5	_	Edwin Steiner			0.86395	5	2mo						
6	_	Komaki		Supert Subar	0.83127	22	2mo						
7	_	Yuval & Trian			0.80414	56	2mo						
8	_	bestfitting			0.80341	6	2mo						

Phase 1 Evolution of score over time

Phase 1 Top Quarks T

		Wall clock time	Peak memory usage
++	Average	$7\mathrm{m}17\mathrm{s}$	2.78GB
D P	Max	11m20s	$4.07 \mathrm{GB}$

• Pure C++, some scikit-learn for training

Efficiency (n_{rec}/n_{true}) of `icecuber 921825 3#01` for primary particles with $n_{p,hits} \ge 4$ (rec tracks : 73939/75099)

Phase 1 outrunner

Pure ML approach using python & Keras

- Event with ${\bf N}$ hits
- predict $N \; x \; N$ relationships between hits, connect pairs when their probability is 1 (rather than 0)

Training:

- 5 hidden layers with 4k 2k 2k 2k 2k 1k
- 27 input variables per pair:

x, y , z, counts, sum(cells.value) per hit two unit vectors per hit for direction from cell information 4 parameters for linear (z₀) and helical compatibility

Prediction:

- predict relationship probability

Reconstruct

- starting from one hit, find highest probability pair, then add pairwise hits
- test new hit for compatibility

+π

 $\boldsymbol{\varphi}_{max}$

Phase 1 Sergey Gorbunov

Summary

First hit:

- A combinatorial algorithm, based on the track ٠ following method
- No search branches ٠
- Simple track model: local 3-hit helix ٠
- Fast data access ٠

Z_{min}

 $\boldsymbol{\varphi}_{\min}$

-π

Phase 1 Special prices ... to be announced

	4	_	demelian		0.87079	35	2mo				
	5	_	Edwin Steiner	-	0.86395	5	2mo				
							2mo				
							2mo				
	The TrackML International Advisory Committee composed of High Energy										
	Physicists and Computer Scientists Markus Elsing, Frank Gaede, Alison Lowndes, Maurizio Pierini, Danilo Rezende and Marc Schoenauer (as detailed in https://sites.google.com/site/trackmlparticle/international-										
	advisory-committee), has examined the contributions submitted.										
	Prel	imina	ry conclusion reached, recipients will be annour	iced sh	iortly.		2mo				
	1 1 01		y conclusion reaction, recipiente minise annear				2mo				
							4mo				
	15	_	Vicens Gaitan		0.70429	19	2mo				
	16	_	Robert	-	0.69955	3	2mo				
	17	_	Yuval-CPMP tribute band		0.69364	20	2mo				

Phase 1 Some lessons to be learned

The threshold has been scary

- for many outside the field the simple size of the dataset was frightening
- even though there were many many teams !!!

Domain knowledge is important

- put some physics helps :-)
- we did not give the magnetic field (on purpose)
- 2 out of three front-runners estimated the magnetic field

Phase 1 Some lessons to be learned

The threshold has been scary

- for many outside the field the simple size of the dataset was frightening
- even though there were many many teams !!!

Domain knowledge is important

Background knowledge

- Very good slides for beginners
- Lecture of particles tracking
- Full helix equations for ATLAS All equations you need!
- Diplom thesis of Andreas Salzburger (Wow, he started in this field as a CERN student already in 2001 :p)
- Doctor thesis of Andreas Salzburger
- · CERN tracking software Acts Sadly, we didn't have time to explore it :)

Phase 2 Throughput

Phase 2 Dataset

Detector remained unchanged

Dataset was slightly simplified - only primary particles enter the scoring

Some "features" have been fixed

- module thickness is corrected (for cluster sizes)
- too narrow beam spot in the phase 1 (5.5 mm -> 5,5 cm)
- looping particles (present in phase 1) have been removed
- overshooting scattering for electrons (0.5 % effect in phase 1 dataset) has been fixed

Phase 2 Scoring

Two-dimensional score folding accuracy & execution time - needs a controlled environment for estimating the exec time robustly (special development done for codalab)

Phase 2 Setup - Controlling timing environment

Phase 2 Current submissions

Participation has dropped dramatically compared to phase 1

- currently only two active submitter
- a few more submissions but mainly with 0 score (starting kit submission)

	RESULTS												
#	User	Entries	Date of Last Entry	score 🔺	accuracy_mean ▲	accuracy_std ▲	computation time (sec)	computation speed (sec/event) ▲	Duration 🔺				
1	fastrack	19	10/16/18	0.9328 (1)	0.94 (1)	0.00 (4)	321.02 (8)	6.42 (8)	362.00 (5)				
2	cubus	8	09/13/18	0.7719 (2)	0.90 (2)	0.01 (3)	675.35 (9)	13.51 (9)	724.00 (6)				
3	EdmonWales	1	10/14/18	0.0000 (3)	0.08 (4)	0.01 (2)	49.23 (4)	0.98 (4)	86.00 (3)				
4	dcoldeira	1	10/13/18	0.0000 (3)	0.08 (4)	0.01 (2)	49.66 (7)	0.99 (7)	86.00 (3)				
5	brunoseznec	1	10/08/18	0.0000 (3)	0.08 (4)	0.01 (2)	49.35 (5)	0.99 (5)	87.00 (4)				
6	Taka	2	09/23/18	0.0000 (3)	0.08 (4)	0.01 (2)	48.13 (2)	0.96 (2)	84.00 (1)				
7	mikhail94321	1	09/11/18	0.0000 (3)	0.18 (3)	0.02 (1)	4945.60 (10)	98.91 (10)	5080.00 (8)				
8	droussea_naif	1	09/07/18	0.0000 (3)	0.08 (4)	0.01 (2)	48.21 (3)	0.96 (3)	85.00 (2)				
9	Tester_91	1	09/07/18	0.0000 (3)	0.08 (4)	0.01 (2)	49.62 (6)	0.99 (6)	87.00 (4)				
10	alexander_liao	12	10/04/18	-1.0000 (4)	0.00 (5)	0.00 (5)	-1.00 (1)	-0.02 (1)	3003.00 (7)				

Phase 2 Current situation

The two submissions, however, are really fast

Spin-off

Spin-off

More Information

trackml.contact@gmail.com

https://sites.google.com/site/trackmlparticle/

@trackmllhc

kaggle <u>https://www.kaggle.com/c/trackml-particle-identification</u>

CadaLab <u>https://competitions.codalab.org/competitions/20112</u>

Phase 2 is running - you can still participate !!!

Backup slides

Introduction Physics

Focus on hadron colliders as the LHC

- High luminosity (HL-)LHC

- Future FCC-hh design study in preparation

The detector

and |eta| < 3

- full silicon detector with realistic resolution, material budget, magnetic field
- composed as **Pixel**, short strip, long strip
 restricted to size of ~ ATLAS ID volume

The detector (2)

Dataset is simulation with ACTS fast simulation

- includes multiple scattering, energy loss and hadronic interactions
- includes inefficiencies and noise/low momentum particle hits
- includes pseudo-realistic **clustering model** (and hence resolutions)

plot & images (left) estimated pixel resolution distribution (right) 3D view of pixel, short strip and long strip detector

The detector (3)

Detector description is given as .csv file

	volume_id	layer_id	module_id	СХ	су	CZ	rot_xu	rot_xv	rot_xw	rot_yu	 rot_yw	rot_zu	rot_zv	rot_zw	module_t	module_minhu	mod
0	7	2	1	-6.579650e+01	-5.17830	-1502.5	0.078459	-9.969170e- 01	0.0	-9.969170e- 01	 0.0	0	0	-1	0.15	8.4	8.4
1	7	2	2	-1.398510e+02	-6.46568	-1502.0	0.046183	-9.989330e- 01	0.0	-9.989330e- 01	 0.0	0	0	-1	0.15	8.4	8.4
2	7	2	3	-1.386570e+02	-19.34190	-1498.0	0.138156	-9.904100e- 01	0.0	-9.904100e- 01	 0.0	0	0	-1	0.15	8.4	8.4
3	7	2	4	-6.417640e+01	-15.40740	-1498.0	0.233445	-9.723700e- 01	0.0	-9.723700e- 01	 0.0	0	0	-1	0.15	8.4	8.4
4	7	2	5	-1.362810e+02	-32.05310	-1502.0	0.228951	-9.734380e- 01	0.0	-9.734380e- 01	 0.0	0	0	-1	0.15	8.4	8.4
5	7	2	6	-6.097600e+01	-25.25710	-1502.0	0.382683	-9.238800e- 01	0.0	-9.238800e- 01	 0.0	0	0	-1	0.15	8.4	8.4
6	7	2	7	-1.327420e+02	-44.49080	-1498.0	0.317791	-9.481610e- 01	0.0	-9.481610e- 01	 0.0	0	0	-1	0.15	8.4	8.4

The dataset - physics

large benchmark dataset (100s Gb) to be released as CERN OpenData

plot & image

(top) transverse momentum distribution for hard scatter and pileup event (bottom) hits produced in one single event

The training dataset - eventXXXX-hits.csv

	hit_id	Х	У	Z	volume_id	layer_id	module_id
0	1	-64.409897	-7.163700	-1502.5	7	2	1
1	2	-55.336102	0.635342	-1502.5	7	2	1
2	3	-83.830498	-1.143010	-1502.5	7	2	1
3	4	-96.109100	-8.241030	-1502.5	7	2	1
4	5	-62.673599	-9.371200	-1502.5	7	2	1
5	6	-57.068699	-8.177770	-1502.5	7	2	1
6	7	-73.872299	-2.578900	-1502.5	7	2	1
7	8	-63.853500	-10.868400	-1502.5	7	2	1
8	9	-97.254799	-10.889100	-1502.5	7	2	1
9	10	-90.292900	-3.269370	-1502.5	7	2	1
10	11	-59.182999	-0.670508	-1502.5	7	2	1

The training dataset - eventXXXX-cells.csv

hits:

table & images (top) csv file format for the hit file (bottom left) csv file format of the cells information (bottom right) cell information illustration

The training dataset - eventXXXX-truth.csv

hits:

The training dataset - eventXXXX-particles.csv

(top) csv file format for the particle file (bottom) csv file format for the truth file

The validation dataset & solution

Independent but structurally identical hit dataset

Public Leaderboard

Private Leaderboard

This leaderboard is calculated with approximately 29% of the test data.

The final results will be based on the other 71%, so the final standings may be different.

🛓 Raw Data 🛛 🤁 Refresh

Submission & scoring (4)

