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The problem - Jet flavour classification
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Particle-based NN architecture

Convolutional layers progressively 
learn a more compact feature 
representation (automatic feature 
engineering)

M. Verzetti (CERN and FWO)
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Convolutional layers progressively 
learn a more compact feature 
representation (automatic feature 
engineering)

The recurrent layers (LSTM) builds 
a “summary” of the information 
contained in each set of feature 
types
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Particle-based NN architecture
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Particle-based NN architecture
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Performance of the DeepJet multi classification algorithm, the recurrent and the convolutional 
approach, demonstrating the probability for gluon jets to be misidentified as a light quark (uds) jet, 
as a function of the efficiency to correctly identify light quark jets. The curves are obtained on 
simulated QCD events with p̂T between 30 and 50 GeV and using jets with a pT above 30 GeV. 
The absolute performance in this figure serves as an illustration since the light quark jet 
identification efficiency depends on the pT and η distribution of the jets, the event topology, the 
flavour composition of the sample, and the generator used. All curves are obtained using Pythia8. 
Jets that originate from a gluon splitting to cc or bb quarks are not considered gluon jets.
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Similar performance to simpler, 
dedicated binary taggers, but with full 
multi-class power.

Significantly better performances in 
given regions with different quark 
composition

M. Verzetti (CERN and FWO)
CMS-DP-2017-027

https://cds.cern.ch/record/2275226?ln=it


• Significantly larger amount of candidates used to accomodate for 
90% of the fat jets


• Need to learn substructure from both charged and neutral 
candidates


• RNNs become computationally too expensive to train

• Use particle-level convolutional layers (P-CNN) where each 

feature is treated as a “colour”

DeepAK8: for boosted resonances

!9
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• Flavour information largely 
improves jet tagging


• Large improvement w.r.t to 
the BDT approach


• Introduces mass sculpting, 
not necessarily a bad thing

Performance

!10

Figure 1. Comparison of the performance of the two BDT taggers and the two particle-based 
CNN taggers in terms of ROC curves in MC simulated events for top jets as signal and QCD jets 
as background. The events correspond to AK8 jets with 1000<pT<1400 GeV and |η|<1.5. 
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M. Verzetti (CERN and FWO)

CMS-DP-2017-049

https://cds.cern.ch/record/2295725?ln=it


DeepDoubleB

!11 M. Verzetti (CERN and FWO)

Conv1D + GRU network topology
• 27 high-level (double-b) features + 60×8 track features + 5×2 

secondary vertex features per Higgs-candidate jet  
• BatchNormalization (BN) to process inputs 

• Conv1D with kernel size 1 = Time-distributed dense = apply same 
dense network to each PF candidate / track / SV 

• GRU = Gated Recurrent Unit = Recurrent network to reduce 
dimensionality of output from Conv1D layers  
(60×32, 5×32) → (50, 50)

SV 
features

Output  
 

Higgs 
QCD
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DeepDoubleBvL, AUC = 97.3%
double-b, AUC = 91.3%

Significantly better 
than current BDT 
approach!

Some mass 
sculpting

Mass Sculpting
DeepDoubleBvL
Figure 4. Effect on the jet soft-drop mass
distribution of misidentified events by the
DeepDoubleBvL identification algorithm
demonstrating the degree to which the
algorithm is dependent on the mass of the
jet. These histograms are obtained for a fixed
overall mistagging rate from a QCD sample.

7/5/2018 10CMS DP-2018/046



Removing mass correlation

!12 M. Verzetti (CERN and FWO)

ROC Comparison 
DeepDoubleBvL
After Decorrelation
Figure 7. Performance of the new
DeepDoubleBvL quark-antiquark pair jet
identification algorithm and its mass
decorrelated version demonstrating the
probability of misidentifying QCD jets as a
function of the tagging efficiency. These
receiver operating characteristic curves are
obtained from a combined sample of QCD
and Hbb.

7/5/2018 13

Mass Sculpting After 
Mass Decorrelation
DeepDoubleBvL
Figure 6. Effect on the jet soft-drop mass
distribution of misidentified events by the
DeepDoubleBvL identification algorithm,
after it has been decorrelated from the jet
mass demonstrating the degree to which the
algorithm is dependent on the mass of the
jet. These histograms are obtained for a fixed
overall mistagging rate from a QCD sample.

7/5/2018 12

Minimal loss in 
performance

Mass sculpting 
gone

Per-batch penalty term proportional to the Kullback-Liebler (KL) 
divergence 

 CMS DP-2018/046

https://cds.cern.ch/record/2295725?ln=it


DeepDoubleC!

!13 M. Verzetti (CERN and FWO)

ROC Comparison 
DeepDoubleCvL
Figure 2. Performance of the double-b and
the DeepDoubleBvL and DeepDoubleCvL
quark-antiquark pair jet identification
algorithms demonstrating the probability of
misidentifying QCD jets as a function of the
tagging efficiency. These receiver operating
characteristic curves are obtained from a
combined sample of QCD and Hcc.

7/5/2018 8

ROC Comparison 
DeepDoubleCvB
Figure 3. Performance of the double-b and
the DeepDoubleBvL and DeepDoubleCvB
quark-antiquark pair jet identification
algorithms demonstrating the probability of
misidentifying Hbb jets as a function of the
tagging efficiency. These receiver operating
characteristic curves are obtained from a
combined sample of Hbb and Hcc.

7/5/2018 9
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From training to 
practice



Training / Analysis: 

• Keras + TensorFlow

• Python-based

• Private productions

• Minimal interaction with ROOT

• Few processes, single threads

• Little memory constraints

• Expendable jobs

Two worlds colliding

!15

Production: 

• Custom framework

• C++ based (speed!)

• Mostly ROOT-centric (at least 

I/O)

• Many processes, multiple 

threads

• Many other concurrent 

activities → memory 
constraints


• Processes cannot die (e.g. 
trigger)+

M. Verzetti (CERN and FWO)



Integration of DeepFlavour into CMSSW. PR #19893 

!16 M. Verzetti (CERN and FWO)



Integration of DeepJet (AK4) into CMSSW. PR #19893 

!17 M. Verzetti (CERN and FWO)



x Interface based on TF python API:

• Uses python C API and a pre-built TF package

• Large overhead and no handle on memory/threading


x Interface based on TF C API:

• Low level and not very convenient

• Lots of customisations and ad-hoc handling needed


✓Interface based on TF C++ API:

• Access to all the needed internals for production usage with minimal 

need for custom code

• Shallow interface to connect TF to the CMSSW internals (e.g. logging)

Backend choice

!18 M. Verzetti (CERN and FWO)

https://gitlab.cern.ch/mrieger/CMSSW-DNN/tree/80X
https://gitlab.cern.ch/mrieger/CMSSW-DNN/tree/c_api
https://github.com/cms-sw/cmssw/tree/master/PhysicsTools/TensorFlow


• TF starts lots of threads in its own thread pool to:

• Faster loading of data

• Parallelism between operations (inter_op_parallelism_threads)

• Parallelism within operations (intra_op_parallelism_threads)


• Normally a good thing, has a critical impact on memory consumption in 
HEP frameworks, which have their own thread schemes/pools (CMSSW 
uses TBB)


• Solved with the implementation of two custom sessions:

• Without any threading (NTSession)

• Sharing the thread pool with the rest of the framework (TBBSession)

Issue 1: Multithreading

!19

Marcel Rieger - 28.2.18
5 Multi-threading in TF

● Upon session startup, TensorFlow starts lots of threads


■ Reserved by dedicated thread pool for

҆ Queued data loading

҆ Parallelization between operations (inter_op_parallelism_threads)

҆ Parallelization within operations (intra_op_parallelism_threads)


■ Overhead acceptable for end-user, but experiment software typically implements    
its own threading model (e.g. via Intel’s Thread Building Blocks, TBB)


→ Critical impact on memory consumption, esp. in parallel production jobs

→ 2

→ 10

Similar behavior

in C/C++ API

M. Verzetti (CERN and FWO)

https://github.com/cms-sw/cmssw/blob/master/PhysicsTools/TensorFlow/src/NTSession.h
https://github.com/cms-sw/cmssw/blob/master/PhysicsTools/TensorFlow/src/TBBSession.h


• Initially DeepJet graph was large (~150MB)

• Not feasible for production operations

• Weights stored as Variables, which need more memory then 

Constants

• By default Keras stores a lot of ancillary information on top of 

the model (operations and tensors used for training, optimiser 
status etc.)


• Reduction of O(10-100) by removing things not needed for 
inference and converting to constants


• Further reduction: one single computation graph loaded and 
shared across threads, multiple sessions computing inference


• In the future: AOT compilation?

Issue 2: Memory footprint

!20 M. Verzetti (CERN and FWO)



A new kid in town: MXNet

!21 M. Verzetti (CERN and FWO)

• Used to train DeepAK8

• Found to be 2-3x faster to train 

that type of model

• Model exported with by the 

gluon API

• no post-processing needed

• outputs a son describing the 

network architecture and a 
binary containing the 
weights


• “Simple” inference engine: 
one .h + one .so file

https://mxnet.incubator.apache.org/api/python/gluon/gluon.html#mxnet.gluon.HybridBlock.export
https://gluon.mxnet.io/


MXNet integration

!22 M. Verzetti (CERN and FWO)



MXNet issues - thread safety

!23 M. Verzetti (CERN and FWO)

Problem: the simple “NaiveEngine” is not thread safe. Meant to run 
as a static singleton and only allows for synchronous operations.

• The other engine type “ThreadedEngine” is thread safe, but 

spawns its own thread pool


Solution: make the engine “thread_local”

• Only 2 lines of code changed

• Not without potential dangers

https://mxnet.incubator.apache.org/faq/env_var.html#engine-type
https://en.cppreference.com/w/cpp/keyword/thread_local
https://github.com/cms-sw/cmssw/pull/23768#issuecomment-407071907


MXNet issues - thread safety

!24 M. Verzetti (CERN and FWO)

Problem: once the previous problem was fixed, the resulting output was still sometimes inconsistent — 
race condition


• For each thread, mxnet creates creates a workspace to store temporary variables (partially 
computed results).


• If multiple graphs are run simultaneously there might be a race condition, but this does should not 
happen since each thread runs one graph at a time…


• …unless the object computing the graph is reattached to a different thread every time, in a 
worker-pool design!


Solution: re-attach the workspace every time before running the computation graph (mxnet patch)

• Only 2 lines of code changed

• Additional mutex added when initialising the Executor as helgrind reported race conditions in 

initialisation (minimal cost)

Workspace

Executor 1

Executor 2

Thread 1

Workspace

Executor 1

Executor 2

Thread 2

https://mxnet.incubator.apache.org/api/python/executor/executor.html
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MXNet 

• Lighter dependencies (only a 
BLAS library)


• Simple model export for 
inference


• Official ONNX integration

• New: Keras compatible

TensorFlow 

• Better thread safety

• Significantly better operators 

support and coverage (always 
cutting edge)


• Native Keras support


MXNet vs. TensorFlow

https://onnx.ai/
https://mxnet.incubator.apache.org/api/python/contrib/onnx.html
https://github.com/awslabs/keras-apache-mxnet


• Jet tagging is of paramount importance for the CMS Physics 
program


• Lots of development in the last ~1.5 years to apply modern machine 
learning techniques to this field

• Large improvements in performance

• Still some room for new developments, especially in the boosted 

regime


• Flavour tagging is not only fancy algorithms, but solid and 
performing computing infrastructures as well

• Model deployment can take a significant amount of time

Summary

!27 M. Verzetti (CERN and FWO)



Backup



Figure 3: Performance of the b jet identification algorithms demonstrating the probability 
for non-b jets to be misidentified as b jet, as a function of the efficiency to correctly 
identify b jets. The curves are obtained on simulated ttbar events using jets within 
abs(η)<2.4 and with pT>30 GeV. The b jets from gluon splitting to a pair of b quarks are 
considered as b jets. The lines shown are for DeepCSV (retrained for the Phase 1 
detector geometry), NoConv, and DeepFlavour. The NoConv algorithm serves only for 
comparison. The absolute performance in this figure serves as an illustration since the b 
jet identification efficiency depends on the pT and η distribution of the jets in the topology 
as well as the amount of b jets from gluon splitting in the sample.
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DeepDoubleC - mass sculpting

!31 M. Verzetti (CERN and FWO)

CMS-DP-2018-XXX

Mass Sculpting
DeepDoubleCvL
Figure 5. Effect on the jet soft-drop mass
distribution of misidentified events by the
DeepDoubleCvL identification algorithm
demonstrating the degree to which the
algorithm is dependent on the mass of the
jet. These histograms are obtained for a fixed
overall mistagging rate from a QCD sample.
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https://cds.cern.ch/record/2295725?ln=it
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Particle-based NN architecture
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Figure 3: Performance of the b jet identification algorithms demonstrating the probability 
for non-b jets to be misidentified as b jet, as a function of the efficiency to correctly 
identify b jets. The curves are obtained on simulated ttbar events using jets within 
abs(η)<2.4 and with pT>30 GeV. The b jets from gluon splitting to a pair of b quarks are 
considered as b jets. The lines shown are for DeepCSV (retrained for the Phase 1 
detector geometry), NoConv, and DeepFlavour. The NoConv algorithm serves only for 
comparison. The absolute performance in this figure serves as an illustration since the b 
jet identification efficiency depends on the pT and η distribution of the jets in the topology 
as well as the amount of b jets from gluon splitting in the sample.

5

Figure 5: Performance of the DeepCSV (retrained for the Phase 1 detector geometry) 
and DeepFlavour b jet identification algorithms demonstrating the probability for non-
b jets to be misidentified as b jet ,as a function of the efficiency to correctly identify b 
jets. The curves are obtained on simulated QCD multijet events using jets within 
abs(η)<2.4 and with 300 GeV < pT < 600 GeV. The b jets from gluon splitting to a pair 
of b quarks are considered as b jets. The absolute performance in this figure serves 
as an illustration since the b jet identification efficiency depends on the pT and η 
distribution of the jets in the topology as well as the amount of b jets from gluon 
splitting in the sample.
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M. Verzetti (CERN and FWO)
CMS-DP-2017-013

https://cds.cern.ch/record/2263802?ln=it
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P-CNNs

Loop over contiguous elements of 
the kernelSweep over the elements



{ { {

particles (sorted)

features

P-CNNs

Multiple features (“colours”) are 
accounted computing the 
transformation

zam = SaSj kaa,j xa,(m+j-1)
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particles (sorted)

features

P-CNNs

zam = SaSj kaa,j xa,(m+j-1)

Different filters/kernels learn 
different transformations


