QCD or What?: Using Autoencoders in HEP

Jennifer Thompson

Universität Heidelberg

17.10.2018

Theo Heimel¹, Gregor Kasieczka², Tilman Plehn¹, arXiv:1808.08979 Jennifer Thompson¹

 1 ITP Universität Heidelberg 2 Institut für Experimentalphysik Universität Hamburg

UNIVERSIT HEIDELBER ZUKUNFT SEIT 1386

1 Introduction to Autoencoders

- 2 Technical Details
- 3 Adversarial Training
- 4 Adversarial Autoencoder Results

5 Conclusions

The Autoencoder

Generic anomaly detector

- Detect non-QCD events
- Entirely data-driven
- Only needs events from a (background-dominated) signal region
- Model-independent

Key Autoencoder Points

- The input data is encoded and compressed
- The reconstruction works for the background, fails for any arbitrary signal
- Minimized at the bottleneck:

 \longrightarrow Needs to be large enough to (completely) encode the background

 \longrightarrow Cannot be so large that it can reconstruct any image

Training

- Train on pure QCD background → We will consider mixed training samples later
- Network learns to reconstruct QCD
- Implemented in Keras with TensorFlow and Adam optimiser
- Activation: PReLu, linear final layer

• Loss function:
$$\sum_{inputs} (x_{out} - x_{in})^2$$

Average QCD image

Testing

- Test on mixed signal+QCD samples
- Network reconstructs QCD, fails for signal
- Signal is flagged as an anomaly
- Network finds any non-QCD signals: It has only seen QCD

Jet Images (Top vs QCD)

figure credit: Michel Luchmann and Theo Heimel, preprocessing by David Shih

- Create jet images from calorimeter entries
- Preprocess to help discrimination
 - Centre on *p_T* weighted jet centre
 - Rotate the jet axis to be vertical
 - Flip so 3rd maximum is on right
 - Pixellate

Average top image

Constituents: Cola and LoLa in Equations

The combination layer (CoLa) acts on 4-momenta $k_{\mu,i}$:

$$k_{\mu,i} \stackrel{\mathsf{CoLa}}{\longrightarrow} \widetilde{k}_{\mu,j} = k_{\mu,i} \; oldsymbol{\mathcal{C}_{ij}}$$

and Lorentz layer (LoLa)

$$\tilde{k}_{j} \stackrel{\text{LoLa}}{\longrightarrow} \hat{k}_{j} = \begin{pmatrix} m^{2}(\tilde{k}_{j}) \\ p_{\mathcal{T}}(\tilde{k}_{j}) \\ w_{jm}^{(E)} E(\tilde{k}_{m}) \\ w_{jm}^{(d)} d_{jm}^{2} \end{pmatrix}$$

trainable

Constituents: Cola and LoLa in Equations

The combination layer (CoLa) acts on 4-momenta $k_{\mu,i}$:

$$k_{\mu,i} \stackrel{\mathsf{CoLa}}{\longrightarrow} \widetilde{k}_{\mu,j} = k_{\mu,i} \; oldsymbol{\mathcal{C}_{ij}}$$

and Lorentz layer (LoLa)

$$\tilde{k}_{j} \stackrel{\text{LoLa}}{\longrightarrow} \hat{k}_{j} = \begin{pmatrix} m^{2}(\tilde{k}_{j}) \\ p_{T}(\tilde{k}_{j}) \\ w_{jm}^{(E)} E(\tilde{k}_{m}) \\ w_{jm}^{(d)} d_{jm}^{2} \end{pmatrix}$$

 \longrightarrow make d_{jm}^2 trainable:

 $g = \text{diag}(0.99 \pm 0.02, -1.01 \pm 0.01, -1.01 \pm 0.02, -0.99 \pm 0.02)$

 \longrightarrow Minkowski metric learnt!

trainable

Proof of Concept: Tops vs. QCD

Samples are available: https://goo.gl/XGYju3

 \longrightarrow Training is stable w.r.t. number of constituents \longrightarrow Loss of information for small bottleneck sizes

Proof of Concept: Tops vs. QCD

- Supervised AUC: 0.98 → AUC~ O(0.9) without knowing what to look for
- Constituent approach outperforms images

The QCD Jet Mass

 \longrightarrow High-mass jets are less QCD-like, more signal-like

Jet Mass and the Autoencoder

- The autoencoder is sensitive the jet mass.
- It is learning typical signal v background features.
- It is not necessary to use ML tools just for this.

What Else Does the Network Learn?

- We want to stop the network from learning the jet mass.
- Adversarial training:

 \longrightarrow adversary (lower) predicts the jet mass from the autoencoder output.

- Need to balance learning rates/relative contributions to total loss.
 - \longrightarrow Best parameter choice depends on QCD p_T slice.
 - \longrightarrow But only dependent on the background.

Proof of Concept: Tops vs. QCD

 \longrightarrow Tradeoff: more mass shaping \leftrightarrow better performance

Proof of Adversarial Concept: Tops vs. QCD

- Still see discrimination power
 - \longrightarrow The network learns more than the jet mass.
- Images now outperform constituents
 - \longrightarrow CoLa/LoLa approach explicitly encodes the mass.
- Move to jet images for the adversarial autoencoder.

Training on Mixed Samples

- Train on sample with signal+background
- For background dominated, the autoencoder still picks out only QCD features
- Bottleneck does not have enough information for both tops and QCD
- Can train and test on same region of phase space

Dark Showers

- Dark showers have a wide variety of possible collider signatures
 → E_T^{miss}, displaced vertices, increased hadronic activity
- We consider a dark SU(3) symmetry
- 2 points chosen for 200GeV dark quark mass
 - \longrightarrow 100GeV dark meson mass
 - \longrightarrow 10GeV dark meson mass
- Dark meson can decay to SM via inverted production mechanism

Adversarial Training

Dark Showers

 \longrightarrow The adversarial autoencoder has discrimination power for a QCD-like signature

Conclusions

https://goo.gl/XGYju3

- Autoencoders are a powerful ML tool to reconstruct images.
- They allow for a generic new physics search.
- They can be trained in a signal region.
- Adversarial autoencoders can be used to decorrelate from the jet-mass (or other observable).