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Introduction to Autoencoders

The Autoencoder

m Generic anomaly
detector

m Detect non-QCD events
m Entirely data-driven

m Only needs events from a
(background-dominated)
signal region

m Model-independent

Feature Feature Feature Feature Feature
Inputs maps maps maps maps maps
1@40x40 10@40x40  10@40x40  10@20x20  5@20x20 5@20x20
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Introduction to Autoencoders

Key Autoencoder Points

pooling Upsampling
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Bottleneck

convolutional (dense)
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m The input data is encoded and compressed

m The reconstruction works for the background, fails for any
arbitrary signal

m Minimized at the bottleneck:
— Needs to be large enough to (completely) encode the
background
— Cannot be so large that it can reconstruct any image



Technical Details

Training

m Train on pure QCD background
— We will consider mixed o - g
training samples later "

Network learns to reconstruct QCD w

priGev]

Implemented in Keras with =
TensorFlow and Adam optimiser

m Activation: PRelu, linear final
layer Average QCD image

m Loss function: 3, o (Xout — Xin)?



Technical Details

Testing

e
m Test on mixed signal+QCD
samples » e
m Network reconstructs QCD, »
fails for signal =
m Signal is flagged as an ’ .
o 10
anomaly 2l
m Network finds any s "o
non-QCD signals: It has e
only seen QCD »



Technical Details

Jet Images (Top vs QCD)

figure credit: Michel Luchmann and Theo Heimel, preprocessing by David Shih

m Create jet images from
calorimeter entries

m Preprocess to help
discrimination

m Centre on pr weighted jet
centre

m Rotate the jet axis to be
vertical

m Flip so 3" maximum is on
right

m Pixellate
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Technical Details

Constituents: Cola and LolLa in Equations

The combination layer (Cola) acts on 4-momenta k,, ;:

and Lorentz layer (LoLa)

m?(k;)
~ Lola 7 pr( j)
b5k = | WO E(f)
Jjm m
d
) G

trainable
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Technical Details

Constituents: Cola and LolLa in Equations

The combination layer (Cola) acts on 4-momenta k,, ;:

k%,' — k#,.l = klh" C,J
and Lorentz layer (LoLa)
m® (k;)
~ LolLa 7 PT(kj)
K=k = 10,0 Ein)
Jjm m
(d) j2
Wim' dim

— make dfm trainable:
g = diag(0.99 + 0.02, —1.01 £+ 0.01, —1.01 + 0.02, —0.99 £+ 0.02)

— Minkowski metric learnt! trainable



Technical Details

Proof of Concept: Tops vs. QCD

Samples are available: https://goo.gl/XGYju3
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— Training is stable w.r.t. number of constituents
— Loss of information for small bottleneck sizes


https://goo.gl/XGYju3

Proof of Concept: Tops vs.
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Technical Details

[
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Constituents
Bottleneck 6
AUC 0.93

Images
Bottleneck 32
AUC 0.89

0.0

0.2 0.4 0.6 0.8
Signal efficiency €5

1.0

m Supervised AUC: 0.98
— AUC~ 0(0.9) without
knowing what to look for

m Constituent approach
outperforms images
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Adversarial Training

The QCD Jet Mass

] QCD

0.025 1 [ Top
C
S 0.020 -
>
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kel
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s |
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0.005 -

0.000 ' . .

0 100 200 300

jet mass [GeV]

— High-mass jets are less QCD-like, more signal-like
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Adversarial Training

Jet Mass and the Autoencoder

least QCD-like
. o e 4 100%
m The autoencoder is sensitive o010
the jet mass. £ 0.008
m It is learning typical signal v %o.oos-
o
background features. 2
£ 0.004
m |t is not necessary to use ML e
. i 0.002 A
tools just for this.
0.000

0 50 100 150 200 250 300
jet mass [GeV]
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Adversarial Training

What Else Does the Network Learn?

m We want to stop the network from learning the jet mass.

m Adversarial training:
— adversary (lower) predicts the jet mass from the
autoencoder output.

m Need to balance learning rates/relative contributions to total
loss.
— Best parameter choice depends on QCD p7 slice.
— But only dependent on the background.
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Proof of Concept: Tops

normalized distribution
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Adversarial Autoencoder Results

: 3% Tops 3% Tops 0.012 3% Tops
3 qco 0.010 3 aco 3 aco
3% Tops % Tops 0.010 % Tops
(5% least QCD-like) | g (5% least QCDAlike) | g (5% least QCD-like)
qco < 0.008 qco S qQcp
= (5% least qcoAlike) | 2 = (5% least QcD-like) | 3 0.008 = (5% least QCD-like)
A=1-10-4 S 0.006 A=5.10"% hl A=1-10"3
auc=o078 | 8 AucC-o70 | g0 AuC = 0.63
£ 0.004 £ 0.004
5 5
2 2
0.002 0.002
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— Tradeoff: more mass shaping <> better performance

200
jet mass [Gev]

250 300
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Adversarial Autoencoder Results

Proof of Adversarial Concept: Tops vs. QCD

1o? m Still see discrimination
power
— The network learns
102 4 | .
Bottieneck 32 more than the jet mass.

A=5-10-%
AUC 0.70

m Images now outperform
constituents
— Cola/LoLa approach

explictly encodes the mass.

101 4

Background rejection 1/eg

Constituents
Bottleneck 15
A=1-10"3
AUC 0.67

0.0 0.2 0.4 0.6 0.8 1.0
Signal efficiency €5

m Move to jet images for the
adversarial autoencoder.
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Adversarial Autoencoder Results

Training on Mixed Samples

m Train on sample with
signal+4-background

i 3% Tops .
0.0101 3 qcp m For background dominated,
v 3% Tops . .
s + (5% least QCD-like) the autoencoder still picks
3 00087 = Q5%/[)| t QCD-lik
2 (5% least QCD-like) out only QCD features
E 0.006 A=5-10"*
8 AUC = 0.65 m Bottleneck does not have
£ 00041 enough information for both
0.002 tops and QCD
0000dl R m Can train and test on
0 50 100 150 200 250 300 .
jet mass [GeV] same region of phase
space
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Adversarial Autoencoder Results

Dark Showers

m Dark showers have a wide variety
of possible collider signatures
— E7”-‘iss, displaced vertices,
increased hadronic activity % oco = 1066y

m We consider a dark SU(3)
symmetry

m 2 points chosen for 200GeV dark
quark mass 0.005 |
— 100GeV dark meson mass o
— 10GeV dark meson mass 0 20 A e e

o
o
N
)

0.015
my =100GeV
0.010

normalized distribution

m Dark meson can decay to SM via
inverted production mechanism
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Adversarial Autoencoder Results

Dark Showers

17 "= 3% m, = 100GeV
0.0175 A 0.010 - 3% m, = 10GeV
=10GeV [ Qcb
_ 001501 my=10Ge c
2 £ 0.008
5
5 0.0125 4 QCD 2 5% least QCD-like
= k) full sample
£ 0.0100 S 0.006 - P
Eel o
8 100Gev| X
N | my = e =
: 0.0075 n 5 0004] _
€ 0.0050 4 2
0.0021 |
0.0025 A
0.0000 - . . . - . 0.000 - - - - =
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— The adversarial autoencoder has discrimination power for a
QCD-like signature
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Conclusions

Conclusions

https://goo.gl/XGYju3

Autoencoders are a powerful ML tool to reconstruct images.

[
m They allow for a generic new physics search.
m They can be trained in a signal region.

[

Adversarial autoencoders can be used to decorrelate from the
jet-mass (or other observable).
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