
Recent developments in
deep-learning applied to

open HEP data
Giles Strong

3rd ATLAS ML Workshop, CERN - 17/10/2018

giles.strong@outlook.com
twitter.com/Giles_C_Strong

Amva4newphysics.wordpress.com
github.com/GilesStrong

mailto:giles.strong@outlook.com
https://twitter.com/Giles_C_Strong
https://amva4newphysics.wordpress.com/
https://github.com/GilesStrong

Introduction

2

ML in HEP and ML innovation

• In recent years, ML innovation in HEP has been growing to solve our
domain-specific problems
• E.g. Object reconstruction, detector simulation, particle ID

• Although these problems are domain specific, their solutions normally rely
on applying and adapting techniques developed outside of HEP

• These techniques are continually being refreshed and updated, and are
normally presented on benchmark datasets for some specific task
• It is not always obvious whether they are appropriate for use in HEP

3

Higgs ML Kaggle Challenge
• Launched in 2014, the Higgs ML Kaggle

competition was designed to help
stimulate outside interest in HEP
problems

• The data contains simulated LHC collision
data for Higgs to di-tau and several
background processes

• Participants were tasked with classifying
the events in order to optimise the
Approximate Median Significance

• The competition was highly successful, and
helped introduce new methods to HEP, as
well as produce more widely used tools,
such as XGBoost

4

https://www.kaggle.com/c/higgs-boson
https://www.kaggle.com/c/higgs-boson
https://github.com/dmlc/xgboost

Investigation overview
• Given the level of work that went into the solutions to the HiggsML

challenge, it is a nice HEP-specific benchmark dataset for evaluating the
possible benefits of new techniques

• I will be using it to demonstrate the cross-domain applicability of several
recent methods:
• A method of quickly optimising the learning rate

• Two recent activation functions

• Learning rate scheduling

• Data augmentation

• New ensembling techniques (in backup slides)
5

Basic information
Dataset description, evaluation metric, and basic classifier

6

Higgs ML dataset
• ATLAS 2012 MC full simulation with Geant 4

• Signal: Higgs to di-tau

• Backgrounds: Z→ 𝜏𝜏, tt, and W decay

• Events selected for the semi-leptonic channel: 𝜏𝜏 → (e | 𝜇) + 𝜏h

• 250,000 labelled events for training, 550,000 unlabelled events for testing

• 31 features:
• 3-momenta of main final-state and upto two jets (pT ordered)

• High-level features: angles, invariant masses, fitted di-tau mass (MMC), et cetera 7

http://opendata.cern.ch/record/328

Challenge aim

• Solutions must predict signal or background for each test event

• Solutions ranked via their Approximate Median Significance
• Quick, accurate, analytical approximation of full discovery significance

• s = sum of weights of true positive events (signal events determined by the solution
to be signal)

• b = weights of false positive events (backgrounds events determined by the
solution to be signal)

• br = constant term (set to 10 for the challenge)

8

https://arxiv.org/abs/1007.1727

Classifier description
• The basic classifier I use is a 4-layer, fully connected network trained using

Adam to minimise the sample-weighted binary cross-entropy of event
class predictions

• An ensemble of 10 networks is trained on 80% of the training data

• The remaining 20% is used to compare architectures and optimise the
threshold needed to classify the unlabelled test data

• The code used is available here, along with Docker and Binder
instructions - (tag 1.0 = stable, reproduces results here)

• Relevant notebooks will be linked during the presentation 9

https://github.com/GilesStrong/QCHS-2018/tree/1.0

Method testing
Learning rate finder

10

Learning rate finder

• “[The Learning Rate] is often the single most important hyperparameter
and one should always make sure that it has been tuned” - Bengio, 2012

• Previously this required running several different trainings using a range of
LRs

• The LR range test (Smith 2015 & 2018) can quickly find the optimum LR
using a single epoch of training

11

https://arxiv.org/abs/1206.5533
https://arxiv.org/abs/1506.01186
https://arxiv.org/abs/1803.09820

Learning rate finder

1. Starting from a tiny LR (~1e-7),
the LR is gradually increased after
each minibatch

12

Learning rate finder

1. Starting from a tiny LR (~1e-7),
the LR is gradually increased after
each minibatch

2. Eventually the network starts
training (loss decreases)

13

Learning rate finder

1. Starting from a tiny LR (~1e-7),
the LR is gradually increased after
each minibatch

2. Eventually the network starts
training (loss decreases)

3. At a higher LR the network can
no longer train (loss plateaus),
and eventually the network
diverges (loss increases) 14

Learning rate finder

• The optimum LR is the highest LR at which the loss is still decreasing

• Further explanation in this lesson

15

https://www.youtube.com/watch?v=JNxcznsrRb8&feature=youtu.be&t=4m55s

Experiment

• Train classifier in cross-validation for
three LR values (1e-5, 1e-3, & 1e-1) for
fixed number of epochs

• Examine rate of convergence and mean
AMS

• 1e-5 too slow for training, AMS = 1.97
• 1e-1 too large to converge, AMS = 1.07
• 1e-3 about right, AMS = 3.26

16

Experiment
• Optimum LR as found using LR finder is compatible with experiment

• Link to experiment notebook

• Full training with of a ReLU-based model produces a validation AMS of 3.72

17

1e-5 too low

2e-3 optimum
Above 1e-2
too high

https://github.com/GilesStrong/QCHS-2018/blob/1.0/Notebooks/0_Investigation_Learning_Rate_Finder.ipynb
https://github.com/GilesStrong/QCHS-2018/blob/1.0/Notebooks/1_Model_Baseline-ReLU.ipynb

Method testing
Activation functions

18

Choice of activation function

• Rectified linear unit appears to be the
default choice in contemporary DL

• Several modifications and new activations
have been proposed in recent years

• The Scaled Exponential Linear Unit (SELU)
(Klambauer et al., 2017) allows networks
to self-normalise without need of batch
normalisation

• The paper demonstrates applicability to
wide range of tasks

19

https://arxiv.org/abs/1706.02515

Choice of activation function

• The Swish activation function
(Ramachandran et al., 2017) also shown to
provide incremental improvement over
other activation functions

• The paper reports results for image
classification and language translation, but
suggests is can be used inplace of ReLU in
any NN

20

https://arxiv.org/abs/1710.05941

Experiment
• Train classifiers in CV for fixed number of epochs

• Weight initialisation scheme set for each activation function

• LR Finder used to optimise LR for each activation function

• Mean AMS:
• ReLU: 3.28

• SELU: 3.18

• Swish: 3.45

• Link to comparison

• Full training with Swish produces a validation AMS of 3.78
21

https://github.com/GilesStrong/QCHS-2018/blob/1.0/Notebooks/2_Investigation_Activation_Function.ipynb
https://github.com/GilesStrong/QCHS-2018/blob/1.0/Notebooks/3_Model_Swish.ipynb

Method testing
Learning-rate schedules

22

Learning-rate cycles
• Adjusting the LR during training is a

common technique for achieving better
performance

• Normally this involves decreasing the LR
once the validation loss becomes flat

• Smith 2015 suggests instead to cycle the
LR between high and low bounds, which
can sometimes lead to super convergence
(Smith 2017)

• Smith 2018 introduces the 1cycle schedule
which further improves the super
convergence

• All three papers demonstrate on image
classification problems

23

Figure - Smith, 2015, arXiv:1506.01186

https://arxiv.org/abs/1506.01186
https://arxiv.org/abs/1708.07120
https://arxiv.org/abs/1803.09820
https://arxiv.org/abs/1506.01186

Learning-rate cycles

• Loshchilov and Hutter 2016 instead
suggests that the LR should be decay as a
cosine with the schedule restarting once
the LR reaches zero

• Huang et al. 2017 later suggests that the
discontinuity allows the network to
discover multiple minima in the loss
surface

• 2016 paper demonstrates on image and
EEG classification

24

Lower figure - Huang et al., 2017, arXiv:1704.00109

https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1704.00109
https://arxiv.org/abs/1704.00109

Experiment

• A previous experiment comparing the use
of different learning rate schedules
indicated that the cosine annealing with
restarts provide better performance

• The experiment here showed only minor
improvements using the cosine annealing

• Validation AMS drops slightly (3.78->3.77)
but other improvements seen in training
and validation metrics

25

https://github.com/GilesStrong/Smith_HyperParams1_Demo/blob/master/Notebooks/Sec4-1_Cyclical_LR.ipynb
https://github.com/GilesStrong/QCHS-2018/blob/1.0/Notebooks/4_Model_Cyclical-LR.ipynb

Method testing
Data augmentation

26

Data augmentation

• Data augmentation involves applying
transformations to input data such that
the a new data point is created, but the
underlying class is unchanged

• This is well used in image classification to
artificially increase the amount of training
data (train-time augmentation), e.g
Krizhevsky et al. 2012

• It can also be applied at test time by
predicting the class of a range of
augmented data and then taking an
average of the predictions.

27

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Data augmentation

• Correct application of augmentation relies
on exploiting invariances within the data:
domain specific

• At the CMS and ATLAS detectors, the
initial transverse momentum is zero,
therefore final states are produced
isotropically in the transverse plane: the
class of process is invariant to the rotation
in azimuthal angle

• Similarly, the beams collide head on with
equal energy: therefore final states are
produced isotropically in Z-axis

28

Experiment
• Train-time data augmentation is implemented here by randomly rotating

events in phi and randomly flipping in the Z and X-axes
• At test-time the mean prediction is taken over a set of 32 transformations

corresponding to 8 phi orientations for each possible set of flips in Z and
X

• Using data augmentation results in a very large improvement in validation
AMS:
• 3.97 when cosine annealing is used

• 3.88 using a constant LR (confirming the hypothesis that the LR schedule improves
performance)

• More in-depth explanation of HEP-data augmentation here
29

https://github.com/GilesStrong/QCHS-2018/blob/1.0/Notebooks/5_Model_Data_Augmentation.ipynb
https://github.com/GilesStrong/QCHS-2018/blob/1.0/Notebooks/5_Model_Data_Augmentation_without_CLR.ipynb
https://amva4newphysics.wordpress.com/2018/04/26/train-time-test-time-data-augmentation/

Comparison and conclusion

30

AMS evolution
• Cut on prediction computed by

bootstrapping the validation data (20% of
training set) 512 times and computing the
mean optimum cut

• Can compute multiple AMSs:
• Overall Val. AMS = maximum AMS on

validation data
• Mean Val. AMS = mean maximal AMS on

bootstrapped validation data
• Val AMS at Mean cut = AMS on validation

data at bootstrap cut
• Public AMS = AMS on public test set (18%

of test set)
• Private AMS = AMS on private test set

(72% of test set)
31

32

Comparison of methods

33

Solution New 1st place 2nd place 3rd place

Method 10 DNNs 70 DNNs Large number
of BDTs

108 DNNs

Train time 2 hours 24 hours 48 hours 3 hours

Inference time 1.5 hours 1 hour ??? 20 minutes

Score 3.818 3.806 3.789 3.787

Hardware
requirements

Intel i7-6500U
<8 GB RAM
(2016 laptop)

Titan GPU
<24 GB RAM

>=8-core CPU
>=64 GB RAM
(m2.4.xlarge)

2012 quad-core
laptop

https://github.com/melisgl/higgsml
https://github.com/TimSalimans/HiggsML
https://www.kaggle.com/c/higgs-boson/discussion/10481

Conclusion
• Even accounting for four years’ worth of improvements in software and

hardware, using the recent methods we are able to able to achieve similar
performance to the winning solutions in a much quicker time

• Still, main improvements beyond finding decent LR, however, come from
ensembling and data augmentation

• Data augmentation requires considering the symmetries of the inputs with
respect to the classes, but is worth doing

• Fast Geometric Ensembling or Stochastic Weight Averaging could be
promising methods of enesembling complex models with slow train time -
see backup slides

34

35

36

Backup slides

Pre-processing steps

1. Infinities, NaNs, and -999 (default value for absent jets) values replaced
with zeros
• Prevents bias of later pre-processing steps

2. Vectors transformed to Cartesian coordinates
• 𝜙 - cyclical and 𝜂 - non-linear; NNs found to work best in fully-linear system

3. Random train-validation split, stratified by class

4. Standardisation and normalisation transformation fitted to training data,
applied to training, validation and testing sets 37

https://github.com/GilesStrong/QCHS-2018/blob/1.0/Modules/Data_Import.py

Method testing
Stochastic weight-averaging

38

Fast ensembling
• Inspired by Loshchilov and Hutter 2016 (SGD with restarts via cosine

annealing), Huang et al. 2017 showed that an ensemble of NNs may be
built from a single training by saving a copy of the model before each
restart (snapshot ensembling)

• Wilson et al. Feb. 2018 further improves on this idea by forcing the
weight evolution along curves of constant loss which are found to connect
loss minima (Fast Geometric Ensembling)

• FGE was found to outperform snapshot ensembling, but one still incurs
increased inference time due to having to evaluate several models

• Wilson et al. Mar 2018 introduces a method which approximates FGE
using a single model: stochastic weight-averaging

39

https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1704.00109
https://arxiv.org/abs/1802.10026
https://arxiv.org/abs/1803.05407

Stochastic weight averaging
• Previous ensembling methods took

averages in model-space, SWA instead
makes the ensemble purely in
weight-space:

• It finds that (cyclical) SGD models reach
regions of high performance, but never
find the optimal point in terms of
generalisation.

• (Fast Geometric) ensembling then works
by moving the average prediction to the
optimal point by averaging over models.

• SWA works by moving to the optimal
point by directly averaging the weights 40

Figure - Wilson et al., Mar., 2018, arXiv:1803.05407

https://arxiv.org/abs/1803.05407

Stochastic weight averaging

• Training begins as normal

• Once the network begins to enter the
region of high performance a copy of the
weights is created

• The original model continues to train via
SGD as normal but after each update, the
new weights are added in a running
average to the copy

• All though shown on image classification,
the authors state that SWA is architecture
agnostic

41

Figures - Wilson et al., Mar., 2018, arXiv:1803.05407

https://arxiv.org/abs/1803.05407

Experiment
• When activated SWA showed large

decreases in validation-fold loss, and high
suppression of statistical fluctuations

• The mean AMS during CV (4.04) and the
overall AMS on the validation data (3.99)
were the highest seen so far

• Running on the test data, showed large
drops in performance, however

• N.B.: I experimented with various setups
but the best one seemed to be starting
SWA after a fixed number of epochs and
to use a constant LR

• Link to experiment 42

https://github.com/GilesStrong/QCHS-2018/blob/master/Notebooks/6_Model_SWA-125.ipynb

