HEP Machine
Learning on HPCs

Amir Farbin
University of Texas Arlington

UNIVERSITY Ol
TEXAS
ARLINGTON

The Motivation

* Primary driver is Deep Learning training, but in principle other techniques are
candidates too.

e Deep Learning training can be complex and time consuming:

* Even with simple models that train relatively quickly (e.g. in a few hours),
Hyper-parameter optimization can require training a lot of models.

* Often GPUs provide > O(50) training acceleration.
* For some problems, training times on single GPUs are O(week).
* Realistic Reconstruction and Simulation Deep Learning Tasks

e Goal: a training service that provides necessary resources, manages the
complexity, and utilizes parallelism to accelerate the training process for any users.

Motivation 2

* DOE wants the LHC experiments to meaningfully (i.e. using the
accelerators) use the upcoming exo-scale machines.

K\ A

HPCs in HEP: US DOE view

What We've Learned So Far

» HPC architectures will continue to evolve, but moving to vectorized, multithreaded
codes tailored to I/0-bound systems will result in higher efficiency codes

» Engaging HPC experts to analyze code has helped identify algorithm alternatives and data flow
bottlenecks, in some cases resulting in spectacular speedups (e.g. 600x). Continued
engagement is therefore essential!

» Need to identify which codes could benefit the most

factor-of-40 penalty in performance that will not be tolerated. HEP will lose its
allocations if it does this.)

» Engaging Exascale Computing Project (ECP) experts early and often will result in faster
adoption of best practices for exascale machines, and influence ECP design choices to HEP’s
benefit. HEP needs a coordinated interface to both ECP & the Leadership Computing Facilities.

» Need to identify which codes could benefit the most

»[Using Exascale machines badly (e.g. by ignoring the GPU/accelerator) will result in a)

» LQCD regularly rewrites its code, has reaped significant speedup benefits every time
» Reinforced that multiyear NERSC allocations & better metrics for pledges are needed

» End-to-end network data flow models are needed to support tradeoff analysis of
storage vs. CPU vs. network bandwidth on a system-wide and program-wide basis
» Greater sharing of the underlying data management software layer may also be beneficial

2%, U.S. DEPARTMENT OF

Office of

DOE HEP Status at HEPAP - May 2018 28

% ENERGY

We must use them properly
(use the accelerators)

Science

RRNNKHFIATFN

% ENERGY

T. Wenaus September 2018

Similar views from HEPAP panel
(supplementary slide)

We must use them heavily
Updated HEP Computing Model

» In preparation for the Inventory Roundtable, the largest HEP
experiments from all three frontiers were asked to provide a
more detailed estimate of their expected computing needs
» CPU, storage, network, personnel, and HPC portability

» “Business as usual” (minimal additional HPC use): $600M %+ 150M
» With effective use of HPC resources this reduces to: $275M + 70M

» By 2030 cost share by frontier is estimated to be:
» 2 Energy Frontier $inM
» ¥4 Intensity Frontier
» Ya Cosmic Frontier

Fall 2017

/Efficien
/ use of
7/ HPC

HEP-Wide Computing Costs

» A strategy encompassing
all HEP computing needs
is required!

S35 U.S. DEPARTMENT OF

Office of
Science

DOE HEP Status at HEPAP - May 2018 29

Jim Sieqrist, HEPAP meeting, May 2018

From Torre Wepaus \

Vi

ERN

NA

Accelerator utilization

e A big topic today and will be bigger in the future
e An example of why: the DOE tells us (LHC computing) we must utilize the
accelerators if we’re to be allowed onto exascale machines

o Not unreasonably; most of their power is in the accelerators

e \We're not in a position today to use accelerators at large scale in offline

o ATLAS has no offline production applications today that utilize GPUs

o ALICE will have GPU based online track reco for Run-3

o CMS is partially rewriting tracking and calo sw to use GPUs, and studying
larger scale adoption in the computing model studies underway (ECoM2X)

e The DOE position prompted new activity, again an ATLAS example...

o In July 2018 the new “HL-LHC Computing” activity area in US ATLAS
organized a workshop that brought together HPC experts from BNL's
Computational Science Initiative (CSl) and a team of senior ATLAS software
developer / physicists

m Look for GPU and ML applications for exascale and identify projects

CE/RW

RRONDKHIAVEN T. Wenaus September 2018 19)

The Context

HL-LHC Computing R&D in US ATLAS

e InJune 2018 US ATLAS project management created a new Level 2 activity,
HL-LHC Computing (led by Heather Gray, LBNL, and Torre Wenaus, BNL)
o To pursue R&D directed ultimately towards realizing HL-LHC computing
requirements
o While also delivering value in the near term, particularly by enabling the
use of next-gen processors, co-processors, HPCs and exascale
e In July the first initiative of this new activity took place: BNL's Computational
Science Initiative (CSl) hosted a team of senior ATLAS software developer
physicists at a workshop with the goals to
o Explore the application of GPUs and other coprocessors, machine
learning, and next-generation HPCs to ATLAS Software & Computing,
directed particularly at leveraging exascale in 2021
o ldentify projects and collaborative efforts by which CSI expertise can be

brought to bear on ATLAS S&C challenges
From Torre @naus
RRNNDKHILAIEN T. Wenaus September 2018 2 s

Also see:

https://indico.cern.ch/event/646942/contributions/2974809/attachments/1635055/2686755/ATLASSWCWeek-Wells FINAL.pdf

https://indico.cern.ch/event/646942/contributions/2974809/attachments/1635055/2686755/ATLASSWCWeek-Wells_FINAL.pdf

The Plan

Leveraging Exascale for ATLAS

e The workshop concluded that a very promising route for ATLAS to exploit exascale in
2021 -- including, crucially, the use of accelerators -- is via ML applications
o Specifically, the ML application of most interest is fast simulation
e And scaling ML applications to utilize large scale resources in order to minimize
turnaround time in network development and tuning
o Distributed training is of interest to achieve fast turnaround
m Presents the possibility of bringing ATLAS workload management tools to
bear (PanDA)
e Accordingly, the workshop convened working groups in both these areas that have
been active since the workshop
o Fast simulation, convened by Heather Gray (LBNL ATLAS), Meifeng Lin (BNL
CSl)
o Distributed training, convened by Abid Malik (BNL CSI), Torre Wenaus (BNL
ATLAS), Amir Farbin (UT Arlington ATLAS)

cw
\

BRRODKHPIPAVEN T. Wenaus September 2018 3)

e Distributed Training and Hyper-parameter optimization on PANDA.
e PANDA already interfaces to HPCs.

e (Goal is to be experiment agnostic.

(Google’s Tensor Processing Unit).

Distributed fraining -

1. Tensor operation parallelism:
GPUs, FPGA, and ASICs

e Note additional HN, Data,

Model parallelism with multi-

GPU

3. Data Parallelism:

Each GPU or
Node computes
gradient on sub-
set of data.
Sync'’ing
gradients
bottlenecked by
bus or network.

4. Model Parallelism: Large model spread
over many GPUs or nodes. Less network
traffic but only efficient for large models.

h

Model HP+]I

Model HP» :II

Model HP3

2. Hyper-parameter scan: II II
simultaneously train Model HP1 Model HP>
multiple models. e.g. 1 Q Q
model per GPU or node. II II

Model HP3; Model HP4

|

|

Model HP4

| (] [0 (I

Model Part A Model Part B Model Par Model Part B

tA

Model Part C Model Part D Model Part C Model Part D

oL _Jo ||
IV=W=|

|

| I

Model Part A Model Part B Model Part A Model Part B
Model Part C Model Part D Model Part C Model Part D

Model HP+

il
Model HP> D

Model HP3
Model HP4

V=w=|

A Vision

User sets up a training session in similar manner as current GRID submissions.
e Define resources required. e.g. CPUs / GPUs per training job.

* Define training data samples. Use Distributed Data Management system (i.e.
Rucio).

Hyper-parameters and measured optimization metrics on test/validation samples
are book-kept and reported to PANDA via appropriate API.

Hyper-parameter optimization can be either provided as part of service or run
externally via the APL.

Processing performance metrics (e.g. time per epoch) are also reported to the
system via APl and monitored.

Trained Models and any results (e.g. plots), are stored in DDM.

Distributed Training

e EXxisting tools and techniques:

e Horovod: from Uber.

* MPILearn: from HEP colleagues at CalTech
e From Giles’ group: https://arxiv.org/pdf/1805.08469.pdf

From LBL/NERSC colleagues: https://arxiv.org/pdf/1708.05256.pdf

* |n general, scaling to large number of nodes can be difficult.

Gradient Energy Matching
for Distributed Asynchronous Gradient Descent

Joeri R. Hermans
University of Licge
joeri.hermans@doct.uliege.be

Gilles Louppe
University of Licge
g.louppe@uliege.be

2017

\
-~

Deep Learning at 15PF

An MPI-Based Python Framework for Distributed Training with Keras

Dustin Anderson', Jean-Roch Vlimant and Maria Spiropulu
California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125

Abstract— We present a lightweight Python framework for
distributed training of neural networks on multiple GPUs or
CPUs. The framework is built on the popular Keras machine
learning library. The Message Passing Interface (MPI) protocol
is used to coordinate the training process, and the system is
well suited for job submission at supercomputing sites. We
detail the software’s features, describe its use, and demonstrate
its performance on systems of varying sizes on a benchmark
problem drawn from high-energy physics research.

: Supervised and

Semi-Supervised Classification for Scientific Data

Thorsten Kurth*, Jian ZhangT, Nadathur Satishi, Toannis MitliagkasT, Evan Racah*, Mostofa Ali
Patwary?, Tareq Malas®, Narayanan Sundaram?, Wahid Bhimji*, Mikhail Smorkalov¥, Jack Deslippe*,
Mikhail ShiryaevY, Srinivas Sridharan/l, Prabhat*, Pradeep Dubey*

on running distributed training of Keras models with Spark
[1].

Since our experiments demonstrating the scaling of the
algorithm, numerous articles have been produced studying
theoretically and demonstrating experimentally the scaling
of distributed training of deep neural network, targeting
different training frameworks, including tensorflow [2].

The authors do not claim that their framework is better

https://arxiv.org/pdf/1805.08469.pdf
https://arxiv.org/pdf/1708.05256.pdf

Short Term Plan

e |dentify 2 types of problem:

1. Quick training: few hours training times where large scale Hyper-parameter optimization is
warranted.

» Build out system for training submission, hyper-parameter management, and monitoring.
2. Long training: days/weeks of training where distributed training is warranted.
- Study scaling / speed up and integrate into system.
* Do you have a candidate problem?
» Extensive Hyper-parameter optimization and/or long training times.
* We already have some candidate problems in ATLAS... but yours may be better suited.
e Can’ttalk about it... this is a public session.

* Once we have working solutions, will need people to try it.

Extras

Detalls

e 2 “use cases”. Factorizable...
1.Hyper-parameter optimization
* Run large number of single GPU training jobs, each with unique architecture.
e Jobs “publish” metrics to database.

o User or optimization suite, manually or automatically queries database,
submits next set of training jobs.

2.[Data Parallel] Distributed Training
e Training data split into n sub-sets.
 n GPUs within same facility (preferably same node), run simultaneously.
e May designate one node as “parameter” server.

e Replicate setup for hyper-parameter optimization.

