
HEP Machine 
Learning on HPCs

Amir Farbin

University of Texas Arlington



The Motivation
• Primary driver is Deep Learning training, but in principle other techniques are 

candidates too.


• Deep Learning training can be complex and time consuming:


• Even with simple models that train relatively quickly (e.g. in a few hours), 
Hyper-parameter optimization can require training a lot of models.


• Often GPUs provide > O(50) training acceleration.  


• For some problems, training times on single GPUs are O(week).


• Realistic Reconstruction and Simulation Deep Learning Tasks


• Goal: a training service that provides necessary resources, manages the 
complexity, and utilizes parallelism to accelerate the training process for any users.



Motivation 2

    T. Wenaus   September 2018

HPCs in HEP: US DOE view

7

Jim Siegrist, HEPAP meeting, May 2018

We must use them heavily

We must use them properly
(use the accelerators)

Similar views from HEPAP panel 
(supplementary slide)

From Torre Wenaus

• DOE wants the LHC experiments to meaningfully (i.e. using the 
accelerators) use the upcoming exo-scale machines. 



    T. Wenaus   September 2018

Accelerator utilization
● A big topic today and will be bigger in the future
● An example of why: the DOE tells us (LHC computing) we must utilize the 

accelerators if we’re to be allowed onto exascale machines
○ Not unreasonably; most of their power is in the accelerators

● We’re not in a position today to use accelerators at large scale in offline
○ ATLAS has no offline production applications today that utilize GPUs
○ ALICE will have GPU based online track reco for Run-3
○ CMS is partially rewriting tracking and calo sw to use GPUs, and studying 

larger scale adoption in the computing model studies underway (ECoM2X)
● The DOE position prompted new activity, again an ATLAS example…

○ In July 2018 the new “HL-LHC Computing” activity area in US ATLAS 
organized a workshop that brought together HPC experts from BNL’s 
Computational Science Initiative (CSI) and a team of senior ATLAS software 
developer / physicists
■ Look for GPU and ML applications for exascale and identify projects

19



The Context

    T. Wenaus   September 2018

HL-LHC Computing R&D in US ATLAS

● In June 2018 US ATLAS project management created a new Level 2 activity, 
HL-LHC Computing (led by Heather Gray, LBNL, and Torre Wenaus, BNL)
○ To pursue R&D directed ultimately towards realizing HL-LHC computing 

requirements
○ While also delivering value in the near term, particularly by enabling the 

use of next-gen processors, co-processors, HPCs and exascale
● In July the first initiative of this new activity took place: BNL’s Computational 

Science Initiative (CSI) hosted a team of senior ATLAS software developer 
physicists at a workshop with the goals to
○ Explore the application of GPUs and other coprocessors, machine 

learning, and next-generation HPCs to ATLAS Software & Computing, 
directed particularly at leveraging exascale in 2021

○ Identify projects and collaborative efforts by which CSI expertise can be 
brought to bear on ATLAS S&C challenges

2
From Torre Wenaus

Also see: 
https://indico.cern.ch/event/646942/contributions/2974809/attachments/1635055/2686755/ATLASSWCWeek-Wells_FINAL.pdf

https://indico.cern.ch/event/646942/contributions/2974809/attachments/1635055/2686755/ATLASSWCWeek-Wells_FINAL.pdf


The Plan

• Distributed Training and Hyper-parameter optimization on PANDA.


• PANDA already interfaces to HPCs.


• Goal is to be experiment agnostic. 

    T. Wenaus   September 2018

Leveraging Exascale for ATLAS

● The workshop concluded that a very promising route for ATLAS to exploit exascale in 
2021 -- including, crucially, the use of accelerators -- is via ML applications
○ Specifically, the ML application of most interest is fast simulation

● And scaling ML applications to utilize large scale resources in order to minimize 
turnaround time in network development and tuning
○ Distributed training is of interest to achieve fast turnaround

■ Presents the possibility of bringing ATLAS workload management tools to 
bear (PanDA)

● Accordingly, the workshop convened working groups in both these areas that have 
been active since the workshop
○ Fast simulation, convened by Heather Gray (LBNL ATLAS),  Meifeng Lin (BNL 

CSI)
○ Distributed training, convened by Abid Malik (BNL CSI), Torre Wenaus (BNL 

ATLAS), Amir Farbin (UT Arlington ATLAS)

3



1. Tensor operation parallelism: 
GPUs, FPGA, and ASICs 
(Google’s Tensor Processing Unit). 

• Note additional HN, Data, 
Model parallelism with multi-
GPU

G 
P 
U

G 
P 
U

G 
P 
U

G 
P 
U

N 
o 
d 
e

Data
Model HP2Model HP1

Model HP4Model HP3

2. Hyper-parameter scan: 
simultaneously train 
multiple models. e.g. 1 
model per GPU or node. 

D1 D2

D3 D4

Model HP4

D1 D2

D3 D4

Model HP3

D1 D2

D3 D4

Model HP2

D1 D2

D3 D4

Model HP1

3. Data Parallelism: 
Each GPU or 
Node computes 
gradient on sub-
set of data.  
Sync’ing 
gradients 
bottlenecked by 
bus or network.

Model HP4

D1

Model Part D

Model Part B

Model Part C

Model Part A

D2

Model Part D

Model Part B

Model Part C

Model Part A

D3

Model Part D

Model Part B

Model Part C

Model Part A

D4

Model Part D

Model Part B

Model Part C

Model Part A

Model HP3

D1

Model Part D

Model Part B

Model Part C

Model Part A

D2

Model Part D

Model Part B

Model Part C

Model Part A

D3

Model Part D

Model Part B

Model Part C

Model Part A

D4

Model Part D

Model Part B

Model Part C

Model Part A

Model HP2

D1

Model Part D

Model Part B

Model Part C

Model Part A

D2

Model Part D

Model Part B

Model Part C

Model Part A

D3

Model Part D

Model Part B

Model Part C

Model Part A

D4

Model Part D

Model Part B

Model Part C

Model Part A

Model HP1

D1

Model Part D

Model Part B

Model Part C

Model Part A

D2

Model Part D

Model Part B

Model Part C

Model Part A

D3

Model Part D

Model Part B

Model Part C

Model Part A

D4

Model Part D

Model Part B

Model Part C

Model Part A

4. Model Parallelism: Large model spread 
over many GPUs or nodes. Less network 
traffic but only efficient for large models.   

Distributed Training



A Vision
• User sets up a training session in similar manner as current GRID submissions.


• Define resources required. e.g. CPUs / GPUs per training job.


• Define training data samples. Use Distributed Data Management system (i.e. 
Rucio).


• Hyper-parameters and measured optimization metrics on test/validation samples 
are book-kept and reported to PANDA via appropriate API.


• Hyper-parameter optimization can be either provided as part of service or run 
externally via the API.


• Processing performance metrics (e.g. time per epoch) are also reported to the 
system via API and monitored. 


• Trained Models and any results (e.g. plots), are stored in DDM.



An MPI-Based Python Framework for Distributed Training with Keras

Dustin Anderson1, Jean-Roch Vlimant and Maria Spiropulu
California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125

Abstract— We present a lightweight Python framework for
distributed training of neural networks on multiple GPUs or
CPUs. The framework is built on the popular Keras machine
learning library. The Message Passing Interface (MPI) protocol
is used to coordinate the training process, and the system is
well suited for job submission at supercomputing sites. We
detail the software’s features, describe its use, and demonstrate
its performance on systems of varying sizes on a benchmark
problem drawn from high-energy physics research.

I. INTRODUCTION

Recent progress in machine learning has enabled deep
neural networks (DNNs) to advance the state of the art in
a wide range of problem domains, from computer vision to
high energy physics [3] [4]. As the applicability of DNNs
has broadened, there have been efforts to develop user-
friendly tools for building them. Software packages such as
Keras [5] and TFLearn [6] facilitate the construction and
training of deep neural networks, offering a flexible interface
for combining common model components and configuring
the optimization process.

Large model sizes and long training times have moti-
vated the development of distributed training algorithms
for DNNs [7] [8]. These algorithms work by splitting the
training task across multiple concurrent processes, which
can be threads on a single machine or jobs spread across
the nodes of a cluster. The speed-up provided by distributed
algorithms is relevant when fast training is critical, such as
when iterating on model choice during development, or when
retraining a model on new data in a production environment.

Despite the rise of convenient model-building software
packages such as Keras, there are few tools for interfac-
ing these packages with distributed training algorithms. In
this paper we introduce a lightweight Python framework,
mpi learn, that provides a straightforward means of training
Keras models in a distributed fashion. The framework is built
on the Message Processing Interface (MPI) protocol [10] and
can operate on personal machines, multi-GPU servers, and
large supercomputing sites alike.

II. RELATED WORK

The package described here was written during the sum-
mer of 2016 and was motivated by the need for a mechanism
to parallelize the training of models that took several days
to converge. It has been used for work for publications and
conferences since early 2017. This package, within the MPI
framework, was developed concurrently with similar work

Contact author dustin.james.andersoncern.ch

on running distributed training of Keras models with Spark
[1].

Since our experiments demonstrating the scaling of the
algorithm, numerous articles have been produced studying
theoretically and demonstrating experimentally the scaling
of distributed training of deep neural network, targeting
different training frameworks, including tensorflow [2].

The authors do not claim that their framework is better
than any other framework. This package was written for
practical reasons in the observed absence of other tools
fulfilling the same purpose.

III. PACKAGE OVERVIEW

The mpi learn package is available on Github [11]. The
prerequisites for using it are an OpenMPI [12] installation
and the keras [5] and mpi4py [13] Python packages.
Support for the Theano [14] and Tensorflow [15] backends
to Keras is provided.

A. Training Algorithms
The package supports two main distributed training al-

gorithms based on stochastic gradient descent (SGD). The
default algorithm is Downpour SGD [7], in which worker
processes compute gradients of a loss function and send
updates to a master process. An alternate algorithm, Elastic
Averaging SGD [8], is also available.

In Downpour SGD, one process is assigned to be the
master and the others are assigned to be workers. The master
and each worker have a copy of the model to be trained. Each
worker has access to a subset of the training data.

During training, a worker reads one batch of training data
and computes the gradient of the loss function on that batch.
The worker sends the gradient to the master, which uses it
to update its model weights. The master sends the updated
model weights to the worker, which then repeats the process
with the next batch of training data.

See Fig. 1 for an illustration of the Downpour SGD
training procedure.

In the Elastic Averaging SGD algorithm, worker processes
are connected to a master via an elastic force that periodically
‘pulls’ the weights closer to one another. Workers train
independently and communicate with the master only via
the elastic force, allowing each worker to explore a different
region of the model parameter space.

Training proceeds asynchronously by default, with worker
processes exchanging weight information with the master
one by one [7]. Synchronous training is also available; in
this case the master processes weights from all workers

ar
X

iv
:1

71
2.

05
87

8v
1 

 [c
s.D

C]
  1

6 
D

ec
 2

01
7

Distributed Training
• Existing tools and techniques:


• Horovod: from Uber.


• MPILearn: from HEP colleagues at CalTech


• From Giles’ group: https://arxiv.org/pdf/1805.08469.pdf


• From LBL/NERSC colleagues: https://arxiv.org/pdf/1708.05256.pdf


• In general, scaling to large number of nodes can be difficult.

Gradient Energy Matching

for Distributed Asynchronous Gradient Descent

Joeri R. Hermans

University of Liège
joeri.hermans@doct.uliege.be

Gilles Louppe

University of Liège
g.louppe@uliege.be

Abstract

Distributed asynchronous SGD has become widely used for deep learning in large-
scale systems, but remains notorious for its instability when increasing the number
of workers. In this work, we study the dynamics of distributed asynchronous SGD
under the lens of Lagrangian mechanics. Using this description, we introduce the
concept of energy to describe the optimization process and derive a sufficient con-
dition ensuring its stability as long as the collective energy induced by the active
workers remains below the energy of a target synchronous process. Making use of
this criterion, we derive a stable distributed asynchronous optimization procedure,
GEM, that estimates and maintains the energy of the asynchronous system below
or equal to the energy of sequential SGD with momentum. Experimental results
highlight the stability and speedup of GEM compared to existing schemes, even
when scaling to one hundred asynchronous workers. Results also indicate better
generalization compared to the targeted SGD with momentum.

1 Introduction

In deep learning, stochastic gradient descent (SGD) and its variants have become the optimization
method of choice for most training problems. For large-scale systems, a popular variant is distributed
asynchronous optimization [2, 3] based on a master-slave architecture. That is, a set of n workers
w individually contribute updates�✓t asynchronously to a master node holding the central variable
✓t, under a global clock t, such that

✓t+1 = ✓t +�✓t. (1)
Due to the presence of asynchronous updates, i.e. without locks or synchronization barriers, an
implicit queuing model emerges in the system [15], such that workers are updating ✓t with updates
�✓t that are possibly based on a previous parameterization

st , ✓t�⌧t (2)

of the central variable, where ⌧t is the number updates that occurred between the time the worker
responsible for the update at time t pulled (read) the central variable, and committed (wrote) its
update. The term ⌧t is traditionally called the staleness or the delay of the update at time t. As-
suming a homogeneous infrastructure, the expected staleness [15] for a worker w under a simple
queuing model Q can be shown to be EQ

⇥
⌧t
⇤
= n� 1. In this setup, instability issues are common

because updates that are committed are most likely based on past and outdated versions of the cen-
tral variable, in particular as the number n of workers increases. To mitigate this effect, previous
approaches [6, 9, 24] suggest to specify a projection function  (·) that modifies �✓t such that the
instability that arises from stale updates is mitigated. That is,

✓t+1 = ✓t + (�✓t). (3)

In particular, considering staleness to have a negative effect, �-SOFTSYNC [24] and DYNSGD [9]
make use of ⌧t to weigh down an update �✓t. While there is a significant amount of empirical

Preprint. Work in progress.

ar
X

iv
:1

80
5.

08
46

9v
1 

 [c
s.L

G
]  

22
 M

ay
 2

01
8

1

Deep Learning at 15PF: Supervised and
Semi-Supervised Classification for Scientific Data

Thorsten Kurth⇤, Jian Zhang†, Nadathur Satish‡, Ioannis Mitliagkas†, Evan Racah⇤, Mostofa Ali
Patwary‡, Tareq Malas§, Narayanan Sundaram‡, Wahid Bhimji⇤, Mikhail Smorkalov¶, Jack Deslippe⇤,

Mikhail Shiryaev¶, Srinivas Sridharank, Prabhat⇤, Pradeep Dubey‡

Abstract—This paper presents the first, 15-PetaFLOP
Deep Learning system for solving scientific pattern clas-
sification problems on contemporary HPC architectures.
We develop supervised convolutional architectures for
discriminating signals in high-energy physics data as
well as semi-supervised architectures for localizing and
classifying extreme weather in climate data. Our Intelcaffe-
based implementation obtains ⇠2TFLOP/s on a single Cori
Phase-II Xeon-Phi node. We use a hybrid strategy employ-
ing synchronous node-groups, while using asynchronous
communication across groups. We use this strategy to
scale training of a single model to ⇠9600 Xeon-Phi nodes;
obtaining peak performance of 11.73-15.07 PFLOP/s and
sustained performance of 11.41-13.27 PFLOP/s. At scale,
our HEP architecture produces state-of-the-art classifica-
tion accuracy on a dataset with 10M images, exceeding
that achieved by selections on high-level physics-motivated
features. Our semi-supervised architecture successfully
extracts weather patterns in a 15TB climate dataset. Our
results demonstrate that Deep Learning can be optimized
and scaled effectively on many-core, HPC systems.

I. DEEP LEARNING FOR SCIENCE

In recent years, Deep Learning (DL) has enabled
fundamental breakthroughs in computer vision, speech
recognition and control system problems, thereby en-
abling a number of novel commercial applications. At
their core, these applications solve classification and
regression problems, tasks which are shared by numerous
scientific domains. For example, problems in identifying
galaxies, screening medical images, predicting cosmo-
logical constants, material properties and protein struc-
ture prediction all involve learning a complex hierarchy
of features, and predicting a class label, or regressing a
numerical quantity. We assert that that Deep Learning is

⇤Lawrence Berkeley National Laboratory, 1 Cyclotron Road, M/S
59R4010A, Berkeley, CA 94720 †Stanford University, Gates Com-
puter Science, 353 Serra Mall, Stanford, CA 94305 ‡Intel Corpo-
ration, 2200 Mission College Blvd., Santa Clara, CA 95054 §Intel
Corporation, 2111 NE 25th Avenue, JF-1-06, Hillsboro, OR 97124
¶Intel Corporation, Turgeneva Str. 30, Nizhny Novgorod, Russian
Federation 603024 kIntel Corporation, 136 Airport Road, Bangalore,
Karnataka, India 560007

poised to have a major impact on domain sciences, but
there are unique challenges that need to be overcome
first.

The primary challenge is in analyzing massive quan-
tities of complex, multi-variate scientific data. Current
Deep Learning implementations can take days to con-
verge on O(10) GB datasets; contemporary scientific
datasets are TBs-PBs in size. Scientific datasets often
contain dozens of channels/variables, which is in contrast
to the small number of channels in images or audio
data. Scientists need to be able to leverage parallel
computational resources to get reasonable turnaround
times for training Deep Neural Networks (DNNs). It is
therefore imperative that DL software delivers good per-
formance not only on a single node but is also scalable
across a large number of nodes. We now elaborate on
two scientific drivers that motivate our optimization and
scaling efforts.

A. Supervised Learning for HEP

A major aim of experimental high-energy physics
(HEP) is to find rare signals of new particles pro-
duced at accelerators such as the Large Hadron Col-
lider (LHC) at CERN, where protons are accelerated to
high-energies and collided together to produce resulting
particles within highly-instrumented detectors, such as
the ATLAS and CMS experiments. Improvements in
classifying these collisions could aid discoveries that
would overturn our understanding of the universe at
the most fundamental level. Neural Networks have been
used in HEP for some time [1], [2]. Recently attention
has focused on deep learning to tackle the increase in
detector resolutions and data rates. Particles produced
by LHC collisions (occurring every 25ns) propagate,
decay and deposit energy in different detector parts, so
creating signals in 100s of millions of channels, with
each collision forming an independent ‘event’. Data from
the surface of the cylindrical detector can be represented
as a sparse 2D image, with data from different layers
of instrumentation as channels in that image. We use the

ar
X

iv
:1

70
8.

05
25

6v
1 

 [c
s.P

F]
  1

7 
A

ug
 2

01
7

https://arxiv.org/pdf/1805.08469.pdf
https://arxiv.org/pdf/1708.05256.pdf


Short Term Plan
• Identify 2 types of problem:


1. Quick training: few hours training times where large scale Hyper-parameter optimization is 
warranted.


• Build out system for training submission, hyper-parameter management, and monitoring.


2. Long training: days/weeks of training where distributed training is warranted.


• Study scaling / speed up and integrate into system. 


• Do you have a candidate problem?


• Extensive Hyper-parameter optimization and/or long training times.


• We already have some candidate problems in ATLAS… but yours may be better suited.


• Can’t talk about it… this is a public session.


• Once we have working solutions, will need people to try it.



Extras



Details
• 2 “use cases”. Factorizable…


1.Hyper-parameter optimization


• Run large number of single GPU training jobs, each with unique architecture.


• Jobs “publish” metrics to database.


• User or optimization suite, manually or automatically queries database, 
submits next set of training jobs.


2.[Data Parallel] Distributed Training


• Training data split into n sub-sets. 


• n GPUs within same facility (preferably same node), run simultaneously.


• May designate one node as “parameter” server.


• Replicate setup for hyper-parameter optimization.


