RDataFrame

easy parallel ROOT analysis at 100 threads

Enrico Guiraud for the ROOT team CHEP 2018, Sofia, Bulgaria

ROOT: a foundation library

- → The amount of data produced by HEP experiments is going to increase drastically
 - e.g. at CERN: HL-LHC, FCC, ...
- → ROOT's mission does not change: bring physicists from collision to publication as effectively as possible

source: http://acceleratingnews.web.cern.ch/content/recent-progress-hilumi-project-0

A recipe for efficient HEP analyses

- → strive for a simple programming model
- → expose modern, elegant interfaces that are
 easy to use correctly and hard to use incorrectly
- → allow to transparently benefit from parallelism

A recipe for efficient HEP analyses

- → strive for a simple programming model
- → expose modern, elegant interfaces that are
 easy to use correctly and hard to use incorrectly
- → allow to transparently benefit from parallelism

HEP is not alone in these challenges: we can **learn from the data science industry** and bring back what physicists need, in the form they need it

A recipe for efficient HEP analyses

- → strive for a simple programming model
- → expose modern, elegant interfaces that are
 easy to use correctly and hard to use incorrectly
- → allow to transparently benefit from parallelism

HEP is not alone in these challenges: we can **learn from the data science industry** and bring back what physicists need, in the form they need it

RDataFrame, officially part of ROOT since v6.14, tries to incarnate these ideas in the context of HEP analyses and HEP data manipulation

ROOT::EnableImplicitMT(); Run a parallel analysis

ROOT::EnableImplicitMT(); Run a parallel analysis

ROOT::RDataFrame df(dataset); on this (ROOT, CSV, ...) dataset

ROOT::EnableImplicitMT(); Run a parallel analysis

ROOT::RDataFrame df(dataset); on this (ROOT, CSV, ...) dataset

auto df2 = df.Filter("x > 0") only accept events for which x > 0


```
ROOT::EnableImplicitMT(); Run a parallel analysis

ROOT::RDataFrame df(dataset); on this (ROOT, CSV, ...) dataset

auto df2 = df.Filter("x > 0") only accept events for which x > 0

.Define("r2", "x*x + y*y"); define r2 = x^2 + y^2
```



```
ROOT::EnableImplicitMT(); Run a parallel analysis

ROOT::RDataFrame df(dataset); on this (ROOT, CSV, ...) dataset

auto df2 = df.Filter("x > 0") only accept events for which x > 0

.Define("r2", "x*x + y*y"); define r2 = x^2 + y^2

auto rHist = df2.Histo1D("r2"); plot r2 for events that pass the cut
```



```
ROOT::EnableImplicitMT(); ...... Run a parallel analysis
ROOT::RDataFrame df(dataset); on this (ROOT, CSV, ...) dataset
auto df2 = df.Filter("x > 0") ..... only accept events for which x > 0
            .Define("r2", "x*x + y*y"); ..... define r2 = x^2 + y^2
auto rHist = df2.Histo1D("r2"); ..... plot r2 for events that pass the cut
df2.Snapshot("newtree", "out.root"); ..... write the skimmed data and r2
                                                to a new ROOT file
```



```
ROOT::EnableImplicitMT(); ...... Run a parallel analysis
ROOT::RDataFrame df(dataset); on this (ROOT, CSV, ...) dataset
auto df2 = df.Filter("x > 0") ..... only accept events for which x > 0
            .Define("r2", "x*x + y*y"); ..... define r2 = x^2 + y^2
auto rHist = df2.Histo1D("r2"); ..... plot r2 for events that pass the cut
df2.Snapshot("newtree", "out.root"); write the skimmed data and r2
                                               to a new ROOT file
```

Lazy execution guarantees that all operations are performed in one event loop

Analyses as computation graphs

ROOT::EnableImplicitMT(); ROOT::RDataFrame df(dataset); auto df2 = df.Filter("x > 0").Define("r2", "x*x + y*y"); auto rHist = df2.Histo1D("r2"); df2.Snapshot("newtree", "newfile.root");

RDataFrame design goals

- → being the fastest (most performant, easiest to work with) way to manipulate HEP data
- → being the go-to ROOT analysis interface from 1 to 100 cores, laptop to cluster, with little to no change in user code
- → full support for and consistent interfaces in both python and C++

Design principles

Elements of **declarative programming** ("user says what, ROOT chooses how"):

high level interfaces provide less typing, increased readability, abstraction of complex operations

...and allow transparent optimisations, e.g. multi-thread parallelisation, lazy evaluation and caching

Design principles

Elements of **declarative programming** ("user says what, ROOT chooses how"):

high level interfaces provide less typing, increased readability, abstraction of complex operations

...and allow transparent optimisations, e.g. multi-thread parallelisation, lazy evaluation and caching

Elements of **functional programming** (pure functions, higher level functions):

push users towards coding in terms of **small reusable components**

less side-effects and less shared state increase thread-safety and code correctness

No templates: $C++ \rightarrow JIT \rightarrow python$

C++

```
d.Filter([](double t) { return t > 0.; }, {"th"})
.Snapshot<vector<float>>("t","f.root",{"pt_x"});
```


No templates: $C++ \rightarrow JIT \rightarrow python$

C++

```
d.Filter([](double t) { return t > 0.; }, {"th"})
.Snapshot<vector<float>>("t","f.root",{"pt_x"});
```

C++ with cling's just-in-time compilation

```
d.Filter("th > 0").Snapshot("t","f.root","pt_x");
```


No templates: $C++ \rightarrow JIT \rightarrow python$

C++

```
d.Filter([](double t) { return t > 0.; }, {"th"})
.Snapshot<vector<float>>("t","f.root",{"pt_x"});
```

C++ with cling's just-in-time compilation

```
d.Filter("th > 0").Snapshot("t","f.root","pt_x");
```

PyROOT, automatically generated python bindings

d.Filter("th > 0").Snapshot("t", "f.root", "pt_x")

(I)

Case study: ATLAS SUSY ntuple → ntuple

Local ntuple → ntuple processing, MC data is processed to add quantities relevant for publication

- → program's main reads similarly to this graph
- → the definition of each cut and new quantity is encapsulated in a C++ lambda or a free function that can be tested independently from the rest of the code
 - → the large blue boxes represent one single function that applies the same operations to an RDF variable and is re-used for all different systematics
- → cuts, calculations and writing of the 60 output trees all happen in the same multi-thread event loop

High-level customization points: RDataSource

- → RDataFrame can read non-ROOT data through RDataSource objects
- → third parties can implement and seamlessly integrate RDataSource implementations for their format of choice

High-level customization points: RDataSource

- → RDataFrame can read non-ROOT data through RDataSource objects
- → third parties can implement and seamlessly integrate RDataSource implementations for their format of choice
- → <u>CSV</u> and <u>Apache Arrow</u> currently supported via RDataSource
- → prototypes for <u>LHCb's MDF</u> binary data format and <u>ATLAS' xAOD event model</u>

DOI 10.5281/zenodo.1303038

High-level customization points: RDataSource

- → RDataFrame can read non-ROOT data through RDataSource objects
- → third parties can implement and seamlessly integrate RDataSource implementations for their format of choice
- → <u>CSV</u> and <u>Apache Arrow</u> currently supported via RDataSource
- → prototypes for <u>LHCb's MDF</u> binary data format and <u>ATLAS' xAOD event model</u>

Users can write the same code independently of the data format analyzed

RDataFrame's parallelization scheme

Task-based parallelism

- → each task processes a range of entries (thanks to inherent independence of HEP events)
- → cannot overcommit, plays well with e.g. experiment frameworks
- → range granularity is the same as TTree compression's to **avoid redundant decompressions**
- → Intel TBB is currently ROOT's task scheduler and thread pool manager
- → RDF parallel writing is also task-based, see <u>G. Amadio</u>, "Writing ROOT Data in Parallel", Track 5

Does it scale? Is it fast?

No disk reads, KNL, 64 physical cores

Monte Carlo QCD Low-Pt events generation+ analysis on the fly

Ad-hoc implementation (patched ROOT 5 + POSIX threads) vs RDF

Read speed on SSD, 4 physical cores @ 3.6GHz

TTree+SetBranchAddress vs TTreeReader vs RDataFrame

Original results by J. Blomer

Performance analysis by X. Valls Pla

READ throughput LHCb OpenData, warm cache

Does it scale? Is it fast?

E. Guiraud, "RDataFrame", CHEP 2018

ROOT I/O API

27

Does it scale? Is it fast?

No disk reads, KNL, 64 physical cores

Monte Carlo QCD Low-Pt events generation+ analysis on the fly

Ad-hoc implementation (patched ROOT 5 + POSIX threads) vs RDF

Read speed on SSD, 4 physical cores @ 3.6GHz

TTree+SetBranchAddress vs TTreeReader vs RDataFrame

Original results by J. Blomer

Performance analysis by X. Valls Pla

READ throughput LHCb OpenData, warm cache

Summary, outlook

- → ROOT provides a modern, high-level, type-safe, parallel interface for data analysis and manipulation
- → RDataFrame is available since ROOT v6.14
 - performant, scales to many-core architectures,
 - has already been used successfully by physicists of major LHC experiments

Summary, outlook

- → ROOT provides a **modern**, **high-level**, **type-safe**, **parallel** interface for data analysis and manipulation
- → RDataFrame is available since ROOT v6.14
 - performant, scales to many-core architectures,
 - has already been used successfully by physicists of major LHC experiments

For the future

- → more pythonic pyROOT bindings (conversion to/from numpy, python lambdas, ...)
- → distributed execution of RDataFrame analyses:
 - working prototype for python+Spark
- → integration with TMVA's inference layer
- → low-level performance optimization