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ROOT: a foundation library

= The amount of data produced by HEP experiments is going to increase drastically
€ c.g at CERN: HL-LHC, FCC, ...

= ROOT's mission does not change:
bring physicists from collision to publication as effectively as possible
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A recipe for efficient HEP analyses

= strive for a simple programming model
= expose modern, elegant interfaces that are
easy to use correctly and hard to use incorrectly

= allow to transparently benefit from parallelism
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A recipe for efficient HEP analyses

= strive for a simple programming model
= expose modern, elegant interfaces that are
easy to use correctly and hard to use incorrectly

= allow to transparently benefit from parallelism

HEP is not alone in these challenges:
we can learn from the data science industry
and bring back what physicists need, in the form they need it
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A recipe for efficient HEP analyses

= strive for a simple programming model
= expose modern, elegant interfaces that are
easy to use correctly and hard to use incorrectly

= allow to transparently benefit from parallelism

HEP is not alone in these challenges:
we can learn from the data science industry
and bring back what physicists need, in the form they need it

RDataFrame, officially part of ROOT since v6.14, tries to incarnate
these ideas in the context of HEP analyses and HEP data manipulation
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https://doi.org/10.5281/zenodo.260230
https://root.cern/doc/master/classROOT_1_1RDataFrame.html

An ergonomic, fast C++ dataframe

ROOT::EnablelmplicitMT(); - Run a parallel analysis
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An ergonomic, fast C++ dataframe

ROOT::EnablelmplicitMT(); - Run a parallel analysis
ROOT::RDataFrame df(dataset); -~ on this (ROQOT, CSV, ...) dataset
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An ergonomic, fast C++ dataframe

ROOT::EnablelmplicitMT(); - Run a parallel analysis
ROOT::RDataFrame df(dataset); -~ on this (ROQOT, CSV, ...) dataset
auto df2 =df.Filter("x>0") only accept events for which x > 0
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An ergonomic, fast C++ dataframe

ROOT::EnablelmplicitMT(); - Run a parallel analysis

ROOT::RDataFrame df(dataset); oo on this (ROOT, CSV, ...) dataset

aUt0 dF2 = dF.Filter("x > 0") <o only accept events for which x > 0
Define("r2", "XFX 4+ yry"): e define r2 = x2 + 2
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An ergonomic, fast C++ dataframe

ROOT::EnablelmplicitMT(); - Run a parallel analysis

ROOT::RDataFrame df(dataset); oo on this (ROOT, CSV, ...) dataset

auto df2 =df.Filter("x>0") only accept events for which x > 0
Define("r2", "XFX 4+ yry"): e define r2 = x2 + y2

auto rHist =df2.Histo1D("r2"); plot r2 for events that pass the cut
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An ergonomic, fast C++ dataframe

ROOT::EnablelmplicitMT(); - Run a parallel analysis

ROOT::RDataFrame df(dataset); oo on this (ROOT, CSV, ...) dataset

auto df2 =df.Filter("x>0") only accept events for which x > 0
Define("r2", "XFX 4+ yry"): e define r2 = x2 + y2

auto rHist = df2.Histo1D("r2"); plot r2 for events that pass the cut

df2.Snapshot("newtree", "out.root"); - write the skimmed data and r2

to a new ROQOT file
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An ergonomic, fast C++ dataframe

ROOT::EnablelmplicitMT(); - Run a parallel analysis

ROOT::RDataFrame df(dataset); oo on this (ROOT, CSV, ...) dataset

auto df2 =df.Filter("x>0") only accept events for which x > 0
Define("r2", "XFX 4+ yry"): e define r2 = x2 + y2

auto rHist = df2.Histo1D("r2"); plot r2 for events that pass the cut

df2.Snapshot("newtree", "out.root"); - write the skimmed data and r2

to a new ROOT file
Lazy execution guarantees that all operations are performed in one event loop
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(Odata
ROOT::EnablelmplicitMT(); () transformation

ROOT::RDataFrame df(dataset);
auto df2 =df.Filter("x > 0")

Define("r2", "x*x + y*y");

define

r2=x2+y2
auto rHist = df2.Histo1D("r2"); N\
df2.Snapshot("newtree", "newfile.root"); @

E. Guiraud, “RDataFrame”, CHEP 2018
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RDataFrame design goals

Dy taso,, ree
~—
~

ROOT
csv
Apache Arrow
[ ATLAS XAOD ]
[ LHCb's MDF ]

~

= Dbeing the fastest (most performant, easiest to work with) way to manipulate HEP data
= Dbeing the go-to ROOT analysis interface from 1 to 100 cores, laptop to cluster,

with little to no change in user code
= full support for and consistent interfaces in both python and C++
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Design principles

Elements of declarative programming (“user says what, ROOT chooses how"):

high level interfaces provide less typing, increased readability, abstraction of complex operations

..and allow transparent optimisations, e.g. multi-thread parallelisation, lazy evaluation and caching
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Design principles

Elements of declarative programming (“user says what, ROOT chooses how"):

high level interfaces provide less typing, increased readability, abstraction of complex operations

..and allow transparent optimisations, e.g. multi-thread parallelisation, lazy evaluation and caching

Elements of functional programming (pure functions, higher level functions):

push users towards coding in terms of small reusable components

less side-effects and less shared state increase thread-safety and code correctness
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No templates: C++ — JIT — python

C++

d.Filter([J(double t) {return t>0.; }, {"th"})
.Snapshot<vector<float>>("t","f.root" {"pt_x"});
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d.Filcer([J(double t) {return t>0.; }, {"th"})
.Snapshot<vector<float>>("t","f.root" {"pt_x"});

C++ with cling’s just-in-time compilation
d.Filcer("th > 0").Snapshot("t","f.root","pt_x");
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No templates: C++ — JIT — python

C++

d.Filter([J(double t) {return t>0.; }, {"th"})
.Snapshot<vector<float>>("t","f.root" {"pt_x"});

C++ with cling’s just-in-time compilation
d.Filcer("th > 0").Snapshot("t","f.root","pt_x");

PyROOT, automatically generated python bindings
d.Filter("th > 0").Snapshot("t","f.root","pt_x")
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“ase study: ATLAS SUSY ntuple — ntuple

@ data Local ntuple — ntuple processing, MC data is
() transformation processed to add quantities relevant for publication

(O result

data cleaning &
generic selections

program’s main reads similarly to this graph

alias systematic o o
o —_| ‘ = the definition of each cut and new quantity is
O normalize . .
G —— encapsulated in a C++ lambda or a free function
that can be tested independently from the rest of
cuts on variables the code
that depend on
systematics . .
¢ - thelarge blue boxes represent one single function
that applies the same operations to an RDF variable
correlations and is re-used for all different systematics
and other |,
usefulu
quantities =>  cuts, calculations and writing of the 60 output trees
all happen in the same multi-thread event loop
write out
processed /
ntuple \ J\ J \ J
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data cleaning &
generic selections

o
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High-level customization points: RDataSource

uses queries reads
User RDataFrame RDataSource

- RDataFrame can read non-ROOT data through RDataSource objects

= third parties can implement and seamlessly integrate RDataSource
implementations for their format of choice
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v_‘_High—IeveI customization points: RDataSource

uses queries reads
User RDataFrame RDataSource

- RDataFrame can read non-ROOT data through RDataSource objects

= third parties can implement and seamlessly integrate RDataSource
implementations for their format of choice

= (S5Vand Apache Arrow currently supported via RDataSource

- prototypes for L HCH's MDFE binary data format and ATLAS xAOD event mode!

DOl 10.5281/zenodo.1303038
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https://root.cern/doc/master/classROOT_1_1RDF_1_1RCsvDS.html
https://root.cern/doc/master/classROOT_1_1RDF_1_1RArrowDS.html
https://github.com/bluehood/mdfds
https://gitlab.cern.ch/uworlika/xaod-ds/tree/master
https://zenodo.org/record/1303038#.WzoSdHYzZNw

High-level customization points: RDataSource

uses queries reads
User RDataFrame RDataSource

- RDataFrame can read non-ROOT data through RDataSource objects

= third parties can implement and seamlessly integrate RDataSource
implementations for their format of choice

= (S5Vand Apache Arrow currently supported via RDataSource

- prototypes for L HCH's MDFE binary data format and ATLAS xAOD event mode!

Users can write the same code independently of the data format analyzed
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RDataFrame’s parallelization scheme

Thread 1

partial u
result

__» task 1
task 2 >

Thread 2

RDF result

——» ftask3 ———»

Task-based parallelism

each task processes a range of entries (thanks to inherent independence of HEP events)
cannot overcommit, plays well with e.g. experiment frameworks

range granularity is the same as TTree compression’s to avoid redundant decompressions
Intel TBB is currently ROOT's task scheduler and thread pool manager

RDF parallel writing is also task-based, see

Vi vl
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https://indico.cern.ch/event/587955/contributions/2938149/

Does it scale? Is it fast?

No disk reads, KNL, 64 physical cores Read speed on SSD, 4 physical cores @ 3.6GHz

Monte Carlo QCD Low-Pt events generation+ analysis on the fly TTree+SetBranchAddress vs TTreeReader vs RDataFrame
Ad-hoc implementation (patched ROOT 5 + POSIX threads) vs RDF Original results by |. Blomer
Performance analysis by X. Valls Pla READ throughput LHCb OpenData, warm cache
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https://indico.cern.ch/event/607855/
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Summary, outlook

- ROOT provides a modern, high-level, type-safe, parallel
interface for data analysis and manipulation

-=> RDataFrame is available since ROOT v6.14

€ performant, scales to many-core architectures,
€ has already been used successfully by physicists of major LHC experiments
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Summary, outlook

- ROOT provides a modern, high-level, type-safe, parallel
interface for data analysis and manipulation

- RDataFrame is available since ROOT v6.14
€ performant, scales to many-core architectures,
€ has already been used successfully by physicists of major LHC experiments

For the future
more pythonic pyROOT bindings (conversion to/from numpy, python lambdas, ...)
distributed execution of RDataFrame analyses:

integration with TMVA's inference layer
low-level performance optimization

N 2 27
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https://github.com/shravan97/PyRDF

