RDatakFrame

easy parallel ROOT analysis at 100 threads

Enrico Guiraud for the ROOT team
CHEP 2018, Sofia, Bulgaria

ROOT: a foundation library

= The amount of data produced by HEP experiments is going to increase drastically
€ c.g at CERN: HL-LHC, FCC, ...

= ROOT's mission does not change:
bring physicists from collision to publication as effectively as possible

f . SISV 4 AN 3 AN

LHC
LS1 EYETS LS2 LS3 14 TeV
i lidati i Poi 4

2011 2013 2014 2015 2016 2017

2020 oz mnn M

experiment upgrade phase 2

75%
nominal nominal luminosity 1 ex

IL::11|nos|ty | experiment beam pipes /
/ 30 fb™' 150 fb™’ 300 fb™

source: http://acceleratingnews.web.cern.ch/content/recent-progress-hilumi-project-0

luminosity

E. Guiraud, “RDataFrame”. CHEP 2018 2

http://acceleratingnews.web.cern.ch/content/recent-progress-hilumi-project-0

A recipe for efficient HEP analyses

= strive for a simple programming model
= expose modern, elegant interfaces that are
easy to use correctly and hard to use incorrectly

= allow to transparently benefit from parallelism

E. Guiraud, “RDataFrame”. CHEP 2018 3

A recipe for efficient HEP analyses

= strive for a simple programming model
= expose modern, elegant interfaces that are
easy to use correctly and hard to use incorrectly

= allow to transparently benefit from parallelism

HEP is not alone in these challenges:
we can learn from the data science industry
and bring back what physicists need, in the form they need it

E. Guiraud, “RDataFrame”. CHEP 2018 4

A recipe for efficient HEP analyses

= strive for a simple programming model
= expose modern, elegant interfaces that are
easy to use correctly and hard to use incorrectly

= allow to transparently benefit from parallelism

HEP is not alone in these challenges:
we can learn from the data science industry
and bring back what physicists need, in the form they need it

RDataFrame, officially part of ROOT since v6.14, tries to incarnate
these ideas in the context of HEP analyses and HEP data manipulation

E. Guiraud, “RDataFrame”, CHEP 2018 5

https://doi.org/10.5281/zenodo.260230
https://root.cern/doc/master/classROOT_1_1RDataFrame.html

An ergonomic, fast C++ dataframe

ROOT::EnablelmplicitMT(); - Run a parallel analysis

E. Guiraud, “RDataFrame”. CHEP 2018 6

An ergonomic, fast C++ dataframe

ROOT::EnablelmplicitMT(); - Run a parallel analysis
ROOT::RDataFrame df(dataset); -~ on this (ROQOT, CSV, ...) dataset

E. Guiraud, “RDataFrame”. CHEP 2018 7

An ergonomic, fast C++ dataframe

ROOT::EnablelmplicitMT(); - Run a parallel analysis
ROOT::RDataFrame df(dataset); -~ on this (ROQOT, CSV, ...) dataset
auto df2 =df.Filter("x>0") only accept events for which x > 0

E. Guiraud, “RDataFrame”. CHEP 2018 3

An ergonomic, fast C++ dataframe

ROOT::EnablelmplicitMT(); - Run a parallel analysis

ROOT::RDataFrame df(dataset); oo on this (ROOT, CSV, ...) dataset

aUt0 dF2 = dF.Filter("x > 0") <o only accept events for which x > 0
Define("r2", "XFX 4+ yry"): e define r2 = x2 + 2

E. Guiraud, “RDataFrame”. CHEP 2018 9

An ergonomic, fast C++ dataframe

ROOT::EnablelmplicitMT(); - Run a parallel analysis

ROOT::RDataFrame df(dataset); oo on this (ROOT, CSV, ...) dataset

auto df2 =df.Filter("x>0") only accept events for which x > 0
Define("r2", "XFX 4+ yry"): e define r2 = x2 + y2

auto rHist =df2.Histo1D("r2"); plot r2 for events that pass the cut

E. Guiraud, “RDataFrame”. CHEP 2018 10

An ergonomic, fast C++ dataframe

ROOT::EnablelmplicitMT(); - Run a parallel analysis

ROOT::RDataFrame df(dataset); oo on this (ROOT, CSV, ...) dataset

auto df2 =df.Filter("x>0") only accept events for which x > 0
Define("r2", "XFX 4+ yry"): e define r2 = x2 + y2

auto rHist = df2.Histo1D("r2"); plot r2 for events that pass the cut

df2.Snapshot("newtree", "out.root"); - write the skimmed data and r2

to a new ROQOT file

E. Guiraud, “RDataFrame”. CHEP 2018 11

An ergonomic, fast C++ dataframe

ROOT::EnablelmplicitMT(); - Run a parallel analysis

ROOT::RDataFrame df(dataset); oo on this (ROOT, CSV, ...) dataset

auto df2 =df.Filter("x>0") only accept events for which x > 0
Define("r2", "XFX 4+ yry"): e define r2 = x2 + y2

auto rHist = df2.Histo1D("r2"); plot r2 for events that pass the cut

df2.Snapshot("newtree", "out.root"); - write the skimmed data and r2

to a new ROOT file
Lazy execution guarantees that all operations are performed in one event loop

E. Guiraud, “RDataFrame”. CHEP 2018 12

(Odata
ROOT::EnablelmplicitMT(); () transformation

ROOT::RDataFrame df(dataset);
auto df2 =df.Filter("x > 0")

Define("r2", "x*x + y*y");

define

r2=x2+y2
auto rHist = df2.Histo1D("r2"); N\
df2.Snapshot("newtree", "newfile.root"); @

E. Guiraud, “RDataFrame”, CHEP 2018

13

RDataFrame design goals

Dy taso,, ree
~—
~

ROOT
csv
Apache Arrow
[ATLAS XAOD]
[LHCb's MDF]

~

= Dbeing the fastest (most performant, easiest to work with) way to manipulate HEP data
= Dbeing the go-to ROOT analysis interface from 1 to 100 cores, laptop to cluster,

with little to no change in user code
= full support for and consistent interfaces in both python and C++

E. Guiraud, “RDataFrame”, CHEP 2018

Design principles

Elements of declarative programming (“user says what, ROOT chooses how"):

high level interfaces provide less typing, increased readability, abstraction of complex operations

..and allow transparent optimisations, e.g. multi-thread parallelisation, lazy evaluation and caching

E. Guiraud, “RDataFrame”. CHEP 2018 15

Design principles

Elements of declarative programming (“user says what, ROOT chooses how"):

high level interfaces provide less typing, increased readability, abstraction of complex operations

..and allow transparent optimisations, e.g. multi-thread parallelisation, lazy evaluation and caching

Elements of functional programming (pure functions, higher level functions):

push users towards coding in terms of small reusable components

less side-effects and less shared state increase thread-safety and code correctness

E. Guiraud, “RDataFrame”. CHEP 2018 16

No templates: C++ — JIT — python

C++

d.Filter([J(double t) {return t>0.; }, {"th"})
.Snapshot<vector<float>>("t","f.root" {"pt_x"});

E. Guiraud, “RDataFrame”. CHEP 2018 17

d.Filcer([J(double t) {return t>0.; }, {"th"})
.Snapshot<vector<float>>("t","f.root" {"pt_x"});

C++ with cling’s just-in-time compilation
d.Filcer("th > 0").Snapshot("t","f.root","pt_x");

E. Guiraud, “RDataFrame”. CHEP 2018 18

No templates: C++ — JIT — python

C++

d.Filter([J(double t) {return t>0.; }, {"th"})
.Snapshot<vector<float>>("t","f.root" {"pt_x"});

C++ with cling’s just-in-time compilation
d.Filcer("th > 0").Snapshot("t","f.root","pt_x");

PyROOT, automatically generated python bindings
d.Filter("th > 0").Snapshot("t","f.root","pt_x")

E. Guiraud, “RDataFrame”. CHEP 2018 19

“ase study: ATLAS SUSY ntuple — ntuple

@ data Local ntuple — ntuple processing, MC data is
() transformation processed to add quantities relevant for publication

(O result

data cleaning &
generic selections

program’s main reads similarly to this graph

alias systematic o o
o —_| ‘ = the definition of each cut and new quantity is
O normalize . .
G —— encapsulated in a C++ lambda or a free function
that can be tested independently from the rest of
cuts on variables the code
that depend on
systematics . .
¢ - thelarge blue boxes represent one single function
that applies the same operations to an RDF variable
correlations and is re-used for all different systematics
and other |,
usefulu
quantities => cuts, calculations and writing of the 60 output trees
all happen in the same multi-thread event loop
write out
processed /
ntuple \ J\ J \ J

systematics #1 syst #2 syst #60 E. Guiraud, "RDataFrame’, CHEP 2018 20

data cleaning &
generic selections

o

alias systematic
variables

to normalized

column names

M cut and new quantity is
lambda or a free function
pendently from the rest of

O

cuts on variables
that depend on
systematics

yresent one single function

Yerations to an RDF variable
correlations Prent systematics
and other |,
usefulh .
quantities (ng of the 60 output trees
lti-thread event loop
write out
processed /
ntuple

E. Guiraud, “RDataFrame”, CHEP 2018 21

High-level customization points: RDataSource

uses queries reads
User RDataFrame RDataSource

- RDataFrame can read non-ROOT data through RDataSource objects

= third parties can implement and seamlessly integrate RDataSource
implementations for their format of choice

E. Guiraud, “RDataFrame”. CHEP 2018 22

v_‘_High—IeveI customization points: RDataSource

uses queries reads
User RDataFrame RDataSource

- RDataFrame can read non-ROOT data through RDataSource objects

= third parties can implement and seamlessly integrate RDataSource
implementations for their format of choice

= (S5Vand Apache Arrow currently supported via RDataSource

- prototypes for L HCH's MDFE binary data format and ATLAS xAOD event mode!

DOl 10.5281/zenodo.1303038

E. Guiraud, “RDataFrame”. CHEP 2018 23

https://root.cern/doc/master/classROOT_1_1RDF_1_1RCsvDS.html
https://root.cern/doc/master/classROOT_1_1RDF_1_1RArrowDS.html
https://github.com/bluehood/mdfds
https://gitlab.cern.ch/uworlika/xaod-ds/tree/master
https://zenodo.org/record/1303038#.WzoSdHYzZNw

High-level customization points: RDataSource

uses queries reads
User RDataFrame RDataSource

- RDataFrame can read non-ROOT data through RDataSource objects

= third parties can implement and seamlessly integrate RDataSource
implementations for their format of choice

= (S5Vand Apache Arrow currently supported via RDataSource

- prototypes for L HCH's MDFE binary data format and ATLAS xAOD event mode!

Users can write the same code independently of the data format analyzed

E. Guiraud, “RDataFrame”. CHEP 2018 24

https://root.cern/doc/master/classROOT_1_1RDF_1_1RCsvDS.html
https://root.cern/doc/master/classROOT_1_1RDF_1_1RArrowDS.html
https://github.com/bluehood/mdfds
https://gitlab.cern.ch/uworlika/xaod-ds/tree/master

RDataFrame’s parallelization scheme

Thread 1

partial u
result

__» task 1
task 2 >

Thread 2

RDF result

——» ftask3 ———»

Task-based parallelism

each task processes a range of entries (thanks to inherent independence of HEP events)
cannot overcommit, plays well with e.g. experiment frameworks

range granularity is the same as TTree compression’s to avoid redundant decompressions
Intel TBB is currently ROOT's task scheduler and thread pool manager

RDF parallel writing is also task-based, see

Vi vl

E. Guiraud, “RDataFrame”. CHEP 2018 25

https://indico.cern.ch/event/587955/contributions/2938149/

Does it scale? Is it fast?

No disk reads, KNL, 64 physical cores Read speed on SSD, 4 physical cores @ 3.6GHz

Monte Carlo QCD Low-Pt events generation+ analysis on the fly TTree+SetBranchAddress vs TTreeReader vs RDataFrame
Ad-hoc implementation (patched ROOT 5 + POSIX threads) vs RDF Original results by |. Blomer
Performance analysis by X. Valls Pla READ throughput LHCb OpenData, warm cache
3
Events/s(KNL) x10
C - uncompressed
7000|—
C compressed
e 6000|—
2000 — | 5000;_
| om0 T
W 1500 — ’ - :
3000|- 3 £
| - g 1
1000 | 2000 g : £ | § |5
| Hyperthreading C § 2 e e w
- @ 8 £ 2 2
500— | 1000: 3 E 8 8 8
2l0 4l0 6l0 8IO 1 (l)O 1 éO 11;0 1 éO 1 éO 2(;0 C
Processing units 0 - - - - S
ROOT 1/0 API 26

E. Guiraud, “RDataFrame”, CHEP 2018

https://indico.cern.ch/event/567550/contributions/2628878/
https://indico.cern.ch/event/607855/

Does it scale? Is it fast?

- Events/s(KNL)
No dis ps @ 3.6GHz
Monte Carlo g s RDataFrame
Ad-hoc implemg 2500 =
h cache
2000 — mpressed
(2]
g ~—— RDataFrame —
2500 — g — Original
W 1500 —
2000 —
2 : I
& 1500 1000 — =
Hyperthreading § =
1000 — g g
£ £
500 — g e
500— 1 1 1 |} 1 1]] 1 1 E E
55 io 20 40 60 80 100 120 140 160 180 200
Processing units - - o
ROOT 1/0 API 27

E. Guiraud, “RDataFrame”, CHEP 2018

https://indico.cern.ch/event/607855/
https://indico.cern.ch/event/567550/contributions/2628878/

Does it scale? Is it fast?

No disk reads, KNL, 64 physical cores Read speed on SSD, 4 physical cores @ 3.6GHz

Monte Carlo QCD Low-Pt events generation+ analysis on the fly TTree+SetBranchAddress vs TTreeReader vs RDataFrame
Ad-hoc implementation (patched ROOT 5 + POSIX threads) vs RDF Original results by |. Blomer
Performance analysis by X. Valls Pla READ throughput LHCb OpenData, warm cache
3
Events/s(KNL) x10
C - uncompressed
7000|—
C compressed
e 6000|—
2000 — | 5000;_
| om0 T
W 1500 — ’ - :
3000|- 3 £
| - g 1
1000 | 2000 g : £ | § |5
| Hyperthreading C § 2 e e w
- @ 8 £ 2 2
500— | 1000: 3 E 8 8 8
2l0 4l0 6l0 8IO 1 (l)O 1 éO 11;0 1 éO 1 éO 2(;0 C
Processing units 0 - - - - S
ROOT 1/0 API 28

E. Guiraud, “RDataFrame”, CHEP 2018

https://indico.cern.ch/event/567550/contributions/2628878/
https://indico.cern.ch/event/607855/

No dis
Monte Carlo Q)

Ad-hoc impleme

2500 —

2000 —

Events/s

1500 —

1000 —
500—
T 1

20 40

Events/s

7000

6000

5000

4000

3000

2000

1000

NNnac it cala? Ic i
READ throughput LHCb OpenData, warm cache

- uncompressed
- compressed

x10°

ROQOT I/0O API

@ 3.6GHz

DataFrame

ache

Jssed

Ed

E. Guiraud, “RDataFrame”, CHEP 2018

ROOT /O API

https://indico.cern.ch/event/607855/
https://indico.cern.ch/event/567550/contributions/2628878/

Summary, outlook

- ROOT provides a modern, high-level, type-safe, parallel
interface for data analysis and manipulation

-=> RDataFrame is available since ROOT v6.14

€ performant, scales to many-core architectures,
€ has already been used successfully by physicists of major LHC experiments

E. Guiraud, “RDataFrame”. CHEP 2018 30

Summary, outlook

- ROOT provides a modern, high-level, type-safe, parallel
interface for data analysis and manipulation

- RDataFrame is available since ROOT v6.14
€ performant, scales to many-core architectures,
€ has already been used successfully by physicists of major LHC experiments

For the future
more pythonic pyROOT bindings (conversion to/from numpy, python lambdas, ...)
distributed execution of RDataFrame analyses:

integration with TMVA's inference layer
low-level performance optimization

N 2 27

E. Guiraud, “RDataFrame”. CHEP 2018 31

https://github.com/shravan97/PyRDF

