
https://root.cern

ROOT
Data Analysis Framework

PyROOT
Automatic Python bindings

for ROOT
Enric Tejedor, Stefan Wunsch, Guilherme Amadio

for the ROOT team

PyHEP 2018
Sofia, Bulgaria

https://root.cern

Outline

▶ Introduction: What is PyROOT?
▶ New Features

● In 6.14: Interoperability with Numpy
● Coming soon: PyRDataFrame

▶ Experimental PyROOT
▶ Future Plans

● Python 2 & Python 3
● User Pythonizations
● Cppyy on Cling

2

https://root.cern

ROOT
Data Analysis Framework

Introduction

https://root.cern

PyROOT

4

▶ Python bindings offered by ROOT
▶ Access all the ROOT C++ functionality from Python

● Python façade, C++ performance
▶ Automatic, dynamic

● No static wrapper generation
● Dynamic python proxies for C++ entities
● Lazy class/variable lookup

▶ Powered by the ROOT type system and Cling
● Reflection information, JIT C++ compilation, execution

▶ Pythonizations
● Make it simpler, more pythonic

▶ Automatic bindings + Pythonizations

A Concrete Example

5

 import ROOT

 f = ROOT.TFile('myfile.root')

 t = f.mytree

 for event in t:
 ...

f is a (dynamic) Python proxy
of a C++ object

Pythonization: access tree as an attribute

Pythonization: iterate over tree events
in a Pythonic way

Current Status

6

▶ The ROOT team has increased the effort in PyROOT
● We are aware of the importance of Python for HEP!

▶ Main objective is to improve PyROOT in two ways:
1. Modernize PyROOT with a new implementation on top of Cppyy
2. In parallel: consolidate current PyROOT: add new features, fix

issues

https://root.cern

ROOT
Data Analysis Framework

New Features in 6.14

https://root.cern

New Features

▶ Zero-copy C++ to Numpy array conversion
● Objects with contiguous data (std::vector, RVec)
● Pythonization: tell Numpy about data and shape

 import ROOT
 import numpy as np

 vec = ROOT.std.vector('int')(2)
 arr = np.asarray(vec) # zero-copy operation
 vec[0], vec[1] = 1, 2

 assert arr[0] == 1 and arr[1] == 2

8

New in 6.14

Memory adopted!

New Features (II)

▶ Read a TTree into a Numpy array
● Branches of arithmetic types

 myTree # Contains branches x and y of type float

 # Convert to numpy array and apply numpy methods
 myArray = myTree.AsMatrix()
 m = np.mean(myArray, axis = 0)

 # Read only specific branches, specify output type
 xAsInts = myTree.AsMatrix(columns = ['x'], dtype = 'int')

9

New in 6.14

https://root.cern

ROOT
Data Analysis Framework

Forthcoming Features

https://root.cern

Forthcoming Features

▶ RDataFrame to Numpy
● All RDataFrame operations available
● Implicit parallelism

 from ROOT.ROOT import RDataFrame

 df = RDataFrame('myTree', 'file.root')

 # Apply cuts, define new columns
 df = df.Filter('x > 0').Define('z', 'x*y')

 np_arr = df.AsMatrix()

11

JITted C++ expression

▶ Use Python callables in RDataFrame
● For Filter and Define operations
● Implementation with Numba?

 df = RDataFrame('myTree', 'file.root')

 df.Filter('x > 0') # Already possible, jitted C++ expression

 def my_cut(x):
 return x > 0

 df.Filter(my_cut, ['x']) # Uses Python callable

12

Forthcoming Features (II)

https://root.cern

ROOT
Data Analysis Framework

The New PyROOT

https://root.cern

The New PyROOT

14

▶ A new (experimental) PyROOT implementation is in the
making
● Already available in ROOT master (link)
● -Dpyroot_experimental=ON

▶ Based on current Cppyy
● Set of packages for automatic Python-C++ binding generation
● Written by Wim Lavrijsen, former PyROOT developer

▶ Goal: benefit from all the new features of Cppyy
▶ ROOT-specific Pythonizations added on top

● A few available at the moment, more will come

https://github.com/root-project/root/tree/master/bindings/pyroot_experimental

The New Structure

15

ROOT & Cling

Cppyy

PyROOT User API ROOT Pythonizations

Automatic Bindings:
Proxy Creation,

Type Conversion
(Python/C API)

STL
Pythonizations

ROOT Type System
(TClass, TMethod, …)

Reflection Info,
Execution

New PyROOT: Lambdas

▶ Possible to use C++ lambdas from Python

16

>>> import ROOT
>>> ROOT.gInterpreter.ProcessLine(
"auto mylambda = [](int i) { std::cout << i << std::endl; };")
140518947094560L
>>> ROOT.mylambda
<cppyy.gbl.function<void(int)>* object at 0x35f9570>
>>> ROOT.mylambda(2)
2

New PyROOT: Variadic Templates

▶ Support for variadic template arguments of functions

17

>>> import ROOT
>>> ROOT.gInterpreter.ProcessLine("""
template<typename... myTypes>
int f() { return sizeof...(myTypes); }
""")
0L
>>> ROOT.f['int', 'double', 'void*']()
3

https://root.cern

ROOT
Data Analysis Framework

Future Plans

https://root.cern

Python2 & Python3

19

▶ PyROOT supports both versions
● Also in the new PyROOT

▶ Not in our plans to discontinue support for Python2
● At least in the next few years
● However, end of life for Py2 is very close (2020)

▶ Building ROOT: we will remove the limitation of one
Python version per build
● If requested, PyROOT libraries will be generated for both Py2 and Py3

User Pythonizations

20

▶ Allow users to define pythonizations for their own classes
● Lazily executed

 @pythonization('MyCppClass')
 def my_pythonizor_function(klass):
 # Inject new behaviour in the class
 klass.some_attr = ...

Python proxy of the class

Medium Term: Cppyy on Cling

21

▶ Both current PyROOT and Cppyy rely on ROOT meta
classes (TClass, TMethod, …)
● I.e. reflection data from ROOT

▶ Not needed: Cppyy could be rebased on top of Cling
● Use cling and its clang binding directly
● Access a more powerful API

https://root.cern

ROOT
Data Analysis Framework

Summary

https://root.cern

Summary

▶ PyROOT’s automatic Python bindings: unique!
▶ The ROOT team is aware of the growing importance of Python

in HEP
● Dedicating more effort to PyROOT

▶ Our goal is to modernize PyROOT
● Modern C++ with Cppyy, new features

▶ Pythonizations are key for usability
● Being tracked here for PyROOT experimental

23

https://sft.its.cern.ch/jira/browse/ROOT-9510

https://root.cern

ROOT
Data Analysis Framework

Backup Slides

https://root.cern

New PyROOT: Move Semantics

▶ Support for rvalue reference parameters

25

>>> import ROOT
>>> ROOT.gInterpreter.ProcessLine(
'void myfunction(std::vector<int>&& v) {
 for (auto i : v) std::cout << i << " ";
 }')
0L
>>> v = ROOT.std.vector['int'](range(10))
>>> ROOT.myfunction(ROOT.std.move(v))
0 1 2 3 4 5 6 7 8 9
>>> ROOT.myfunction(ROOT.std.vector['int'](range(10)))
0 1 2 3 4 5 6 7 8 9

