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Today

• ROOT / TMVA 

• News! 

• Deep learning 

• Cross validation 

• BDT Parallelisation 

• A look into the future



ROOT — TMVA
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ROOT aims to help high-energy physics analysis by 
providing building blocks for 

• Data processing, analysis, visualisation, storage, 
parallelisation and more 

• https://root.cern.ch 

ROOT Machine Learning tools provided through TMVA 
(Toolkit for MultiVariate Analysis) 

• Main ML tool for HEP applications until ~2013 

• Now healthy competition with non-HEP tools 

• TMVA under active development

https://root.cern.ch


TMVA — Toolkit for multivariate analysis
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TMVA is a toolkit 

• Common interfaces 

• Data loading and preprocessing 

• Analysis tools 

Design goals 

• Easy to use 

• Good out-of-the-box performance 

• Standard implementation 

• Targeted to HEP applications 

• Long-term support



Deep Learning in HEP
Analysis 

• Searching for Exotic Particles in High-Energy Physics with Deep Learning (2014) — arxiv:1402.4735 

• Search for t t̄H production in the H → bb  ̄decay channel with leptonic t t̄ decays in proton-proton collisions at √s = 13 TeV with the CMS detector (2018) —  
arxiv:1804.03682 

Tracking/reconstruction 

• Optimisation and performance studies of the ATLAS b-tagging algorithms for the 2017-18 LHC run (2017)  — ATL-PHYS-PUB-2017-013 

• Jet Substructure Classification in High-Energy Physics with Deep Neural Networks (2016) — arXiv:1603.09349 

• QCD-Aware Recursive Neural Networks for Jet Physics (2017) — arxiv:1702.00748 

• TrackML Challenge (2018) — http://atlas.cern/updates/atlas-news/trackml-challenge 

Simulation 

• CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks  (2017) —  
arXiv:1712.10321 

Outside CERN 

• Convolutional Neural Networks Applied to Neutrino Events in a Liquid Argon Time Projection Chamber (2016) — arXiv:1611.05531 

Plus a lot more..!
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Dense layers

Dense layers 
2D CNN 

RNN

GAN

2D CNN

http://atlas.cern/updates/atlas-news/trackml-challenge


Deep Learning in TMVA

Deep learning library in TMVA 

• Robust and efficient high-level DNN tools geared 
towards HEP 

• Good out-of-the-box performance 

• Do not compete with industry (proven methods!) 

• CPU: BLAS + ROOT implicit multithreading (Intel TBB) 

• GPU: CUDA (cuBLAS) 

Timeline 

• 2016 — Dense layers (CPU + GPU) 

• 2017 — Convolutional, Recurrent (CPU) 

• 2018 — Convolutional (GPU), Generative, LSTM (CPU)

2016

2017
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Deep Learning Performance 

• Electron imaging in CMS calorimeter 
(internal) 

• Identical setups with TMVA and Keras 

• CNN outperforms Dense network 

• Identical performance for keras and TMVA
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Identical performance 
Keras — TMVA CNN

• Using Higgs public dataset 
with 11M events 

• Significant improvements 
compared to shallow 
networks and BDT  
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Deep Learning Performance 

Training time — Dense networks 

• HiggsML dataset with 11M Events 

• 5 layers 200 hidden units each 

• Keras with TensorFlow backend 

• “Out-of-the-box” performance of TMVA vs. keras 

Excellent TMVA performance! 

• Better than keras?
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Deep Learning Performance 
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NOT saying TMVA outperforms TensorFlow! 

• cuBLAS for both TMVA + TF 

• TF optimised for large operations

Batch size 100 Batch size 1000

 9



TMVA OPENBLAS

LWTNN
TMVA MACOS-BLAS

TMVA BATCH (OBLAS)

TMVA BATCH (GPU)

KERAS BATCH (GPU)
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Evaluation time — Dense networks 

• Comparison TMVA, keras, LWTNN 

• In time critical applications — e.g. trigger 

• Batching not an option? 

Again — keras/tensorflow benefits from larger 
networks



D1 D2 D3
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Cross Validation

Cross validation — Efficient use of data 

• Data generation generally expensive in HEP 

• Deep models are large; risk of overtraining 

• TMVA implements K-folds 

Integration with TMVA workflow 

• Now possible to use with TMVA analysis tools 

• Natively supports “CV in application” 

Parallel evaluation of folds through ROOT multi 
processing!
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Boosted Decision Tree

Good performance over a wide variety of problems 

• Used extensively in Run 1 and 2 in trigger, 
reconstruction and analysis 

• Popular outside of HEP world 

Efforts to parallelise BDT’s 

• Speed up ~1.4 with 4 threads approaching ~3 
asymptotically

 

Parallelization Conclusions
19

● Reduction in time of about 1.6x for with 4 
cores

● 2.6x reduction for 16 cores
● Asymptotes at about 3x reduction

● Some of the intensive processes couldn't 

be parallelized 
● These required accessing the same 

changing iterator at the same time
● Clever schemes exist to parallelize the tricky 

push_back processes and further improve the 

speed?

For 1 Million events*

nThreads

* Used 10 trees to study timing, but the time is linear in the 

number of trees, so the net time reduction is the same 

regardless of the number of trees

10 Trees — 1 Million events
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Future — Short term

• DNN Library 

• GPU: CNN 

• CPU: LSTM, GAN, VAE 

• Optimisers 

• CV for model selection 

• Modernised interfaces, integration with ROOT 
RDataFrame
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Future — Long term

• Lesson from the HSF Community white paper — 
Efficient workflows 

• Focus on toolkit part, provide tools for efficient 

• data loading (for training) 

• integration with external tools 

• deployment

Original slide by Luke de Oliveira — Adapted by Stefan Wunsch

TDataFrame now called RDataFrame (https://root.cern/blog/rootrwhy)
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https://root.cern/blog/rootrwhy


Thanks
Get in touch 
https://root.cern.ch 
https://root-forum.cern.ch

https://root.cern.ch
https://root-forum.cern.ch


Extra slides



TMVA — Toolkit for multivariate analysis

MVA’s

Data 
loading

Common 
interfaces

External 
MVA’s

Data pre-
processing

Analysis 
tools

!17

TMVA is a toolkit 

• Common interfaces 

• Data loading and preprocessing 

• Analysis tools 

Design goals 

• Easy to use 

• Good out-of-the-box performance 

• Standard implementation 

• Targeted to HEP applications 

• Long-term support
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D1 D2 D3
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Cross Validation

TMVA supports “CV in application” 

• Common workflow in HEP analysis 

• Deterministic assignment of events to folds + save 
all trained models 

• Performance estimation holds for collection of 
models 
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Training data
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Output model
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Used in e.g. 

• Evidence for the H → bb  ̄decay with the ATLAS detector (2017) — arxiv:1708.03299 

• Search for the bb decay of the Standard Model Higgs boson in associated (W/Z)H production with the ATLAS detector (2015) — arxiv:1409.6212


